Skip to main content
Log in

A Study of the Mechanisms of Action of FMRF-Like Peptides in Inducing Muscle Contraction in Planarians (Platyhelminthes)

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The present work focuses on the study of localization of peptidergic neurons and muscle fibers of body wall musculature in planarians Girardia tigrina and Polycelis tenuis with the use of immunohistochemistry, immunocytochemistry, fluorescent microscopy, and confocal laser scanning microscopy. A close spatial relationship between FMRFamide-immunopositive nerve fibers and myofilaments is shown. Such localization of peripheral peptidergic nerve fibers may suggest an important role FMRF-like neuropeptides play in the regulation of muscle function. Physiological analysis of the muscle cells isolated from the planarian Procerodes littoralis confirmed that native flatworm FMRF-like peptides GYIRF and YIRF have the inducing effect on muscle contractions in planarians. It was found that dihydropyridine calcium channel blockers (nicardipine, nitrendipine, and nifedipine), as well as ryanodine, an antagonist of the endoplasmic reticulum calcium channels, inhibited peptide-induced muscle contraction. The blockers of the intracellular calcium ions reuptake (thapsigargin and cyclopiazonic acid) decreased the number of peptide-induced muscular responses. The findings suggest that FMRF-like peptide-induced muscle contraction is dependent on calcium ions from both extracellular pool and intracellular stores. The results demonstrate the presence of different receptors and ion channels controlling muscle contractions in flatworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. Shaw, A. G. Maule, and D. W. Halton, Int. J. Parasitol. 26 (4), 335 (1996).

    Article  Google Scholar 

  2. P. McVeigh, G. R. Mair, L. Atkinson, et al., Int. J. Parasitol. 39, 1243 (2009).

    Article  Google Scholar 

  3. R. N. Johnston, C. Shaw, D. W. Halton, et al., Biochem. Biophys. Res. Commun. 209, 689 (1995).

    Article  Google Scholar 

  4. R. N. Johnston, C. Shaw, D. W. Halton, et al., J. Neurochem. 67, 814 (1996).

    Article  Google Scholar 

  5. G. Maule, D. W. Halton, and L. Thim, Biochem. Biophys. Res. Commun. 193, 1054 (1993).

    Article  Google Scholar 

  6. D. A. Price and M. J. Greenberg, Science 197 (4304), 670 (1977).

    Article  ADS  Google Scholar 

  7. N. D. Kreshchenko, Biochemistry (Moscow). Suppl. Ser. A: Membr. Cell Biol. 8 (1), 89 (2014).

    Google Scholar 

  8. O. O. Tolstenkov, L. Akimova, N. B. Terenina, and M. K. S. Gustafsson, Parasitol. Res. 111, 1977 (2012).

    Article  Google Scholar 

  9. M. Almuedo-Castillo, X. Crespo, F. Seebeck, et al., PLoS Genet. 10 (6), e1004400 (2014).

    Article  Google Scholar 

  10. L.-Ch. Cheng, K. C. Tu, C. W. Seidel, et al., Dev. Biol. 433, 357 (2018).

    Article  Google Scholar 

  11. J. Baguna, Semin. Cell Dev. Biol. 87, 3 (2019).

    Article  Google Scholar 

  12. V. V. Novikov, I. M. Sheiman, and E. E. Fesenko, Bioelectromagnetics 29 (5), 387 (2008). https://doi.org/10.1002/bem.20407

    Article  Google Scholar 

  13. P. G. Barghouth, M. Thiruvalluvan, and N. J. Oviedo, Biochim. Biophys. Acta, Biomembr. 1848, 2629 (2015). https://doi.org/10.1016/j.bbamem.2015.02.024

    Article  Google Scholar 

  14. F. Durant, J. Bischof, Ch. Fields, et al., Biophys. J. 116, 948 (2019).

    Article  ADS  Google Scholar 

  15. T. Nogi, D. Zhang, J. D. Chan, et al., PLoS Negl. Trop. Dis. 3 (6), e464 (2009).

    Article  Google Scholar 

  16. J. J. Collins and Ph. A. Newmark, PLoS Pathog. 9 (7), e1003396 (2013).

    Article  Google Scholar 

  17. N. J. Wheeler, P. N. Agbedanu, M. J. Kimber, et al., Parasitol. Vectors 8, 34 (2015).

    Article  Google Scholar 

  18. E. I. Maciel, C. Jiang, P. G. Barghouth, et al., Dev. Comp. Immunol. 93, 18 (2019).

    Article  Google Scholar 

  19. F. Cebria, Front. Cell Dev. Biol. 4, 8 (2016). https://doi.org/10.3389/fcell.2016.00008

    Article  Google Scholar 

  20. N. D. Kreshchenko, Biophysics (Moscow) 62 (2), 271 (2017).

    Article  Google Scholar 

  21. D. W. Halton and A. G. Maule, Can. J. Zool. 82, 316 (2004).

    Article  Google Scholar 

  22. R. Pascolini, F. Panara, I. Di Rosa, et al., Cell. Tissue Res., 499 (1992).

  23. R. Pascolini, F. Panara, G. Gabbiani, et al., Boll. Zool. 60 (4), 403 (1993). https://doi.org/10.1080/11250009309355848

    Article  Google Scholar 

  24. M. H. Wahlberg, Cell. Tissue Res. 291 (3), 561 (1998).

    Article  Google Scholar 

  25. G. R. Mair, D. W. Halton, A. G. Maule, and C. Shaw, Parasitol. Today 14, 73 (1998).

    Article  Google Scholar 

  26. K. L. Blair, T. A. Day, M. C. Lewis, et al., Parasitology 102, 251 (1991).

    Article  Google Scholar 

  27. C. G. Moneypenny, N. Kreshchenko, T. A. Day, et al., Parasitology 122, 447 (2001).

    Article  Google Scholar 

  28. N. Kreshchenko, T. A. Day, D. W. Halton, and A. G. Maule, Acta Parasitol. 45 (3), 256 (2000).

    Google Scholar 

  29. N. D. Kreshchenko, M. Totten, A. G. Maule, et al., in Proc. Int. Symp. “Biological Motility: New Trends in Research,” Abstracts of Papers (Pushchino, 2001), pp. 82–83.

  30. N. B. Terenina, N. D. Kreshchenko, N. V. Mochalova, and S. O. Movsesyan, Helminthologia 55 (3), 185 (2018).

    Article  Google Scholar 

  31. O. O. Tolstenkov, V. V. Prokofiev, N. B. Terenina, and M. K. S. Gustafsson, Parasitol. Res. 108, 1219 (2011). https://doi.org/10.1007/s00436-010-2166-6

    Article  Google Scholar 

  32. M. Reuter, M. K. S. Gustafsson, J. Lang, and C. J. P. Grimmelkuijzen, Zoomorphology 109, 303 (1990).

    Article  Google Scholar 

  33. G. R. Mair, R. N. Johnston, D.W. Halton, et al., Zoomorphology 116 (4), 213 (1996).

    Article  Google Scholar 

  34. K. Mäntylä, D. W. Halton, M. Reuter, et al., Hydrobiologia 383, 167 (1998).

  35. M. Reuter, M. K. S. Gustafsson, I. M. Sheiman, et al., Invertebrate Neurosci. 1, 133 (1995).

    Article  Google Scholar 

  36. N. Kreshchenko, M. Reuter, I. Sheiman, et al., Invertebr. Reprod. Dev. 35 (2), 109 (1999).

    Article  Google Scholar 

  37. M. Reuter, M. K. S. Gustafsson, K. Mäntylä, and C. J. P. Grimmelikhuijzen, Zoomorphology 116, 111 (1996).

    Article  Google Scholar 

  38. F. Cebria, Neurosci. Res. 61, 375 (2008).

    Article  Google Scholar 

  39. K. Mäntylä, M. Reuter, D. W. Halton, et al., Acta Zool. (Stockholm) 79 (1), 1 (1998b).

  40. C. G. Moneypenny, A. G. Maule, C. Shaw, et al., Parasitology 115, 281 (1997).

    Article  Google Scholar 

  41. G. Hrĉkova, S. Velebny, D. W. Halton, et al., Int. J. Parasitol. 34, 83 (2004).

    Article  Google Scholar 

  42. N. J. Marks, S. Johnson, D. W. Halton, et al., Parasitology 113, 394 (1996).

    Article  Google Scholar 

  43. M. K. Graham, I. Fairweather, and J. G. McGeown, Parasitology 114, 455 (1997).

    Article  Google Scholar 

  44. K. L. Blair and P. A. V. Anderson, Parasitology 109, 325 (1994).

    Article  Google Scholar 

  45. T. A. Day, A. G. Maule, C. Shaw, et al., Parasitology 109, 455 (1994).

    Article  Google Scholar 

  46. T. A. Day, A. G. Maule, C. Shaw, and R. A. Pax, Peptides 18, 917 (1997).

    Article  Google Scholar 

  47. T. A. Day, J. Haithcock, M. Kimber, and A. G. Maule, Parasitology 120, 417 (2000).

    Article  Google Scholar 

  48. P. Cobbett and T. A. Day, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 134, 593 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Prof. D.W. Halton and Prof. A.G. Maule from Queen’s University of Belfast, Northern Ireland, United Kingdom for the opportunity to work in the laboratory and their supervision and to Dr. A. Mousley for help in mastering muscle cell culture techniques.

The study was performed using the equipment of the Sector of Optical Microscopy and Spectrophotometry of the Core Facilities of the Pushchino Scientific Center for Biological Research (Pushchino, Russia).

Funding

The study of muscle contraction physiology was supported by the Royal Society Fellowship Program, Great Britain. Immunocytochemical studies for the identification of FMRF-like peptides and the histochemical study of musculature in planarians were supported by the Russian Foundation for Basic Research (project no. 18-04-00349a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Kreshchenko.

Ethics declarations

Conflict of interests. The author declares that no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by M. Batrukova

Abbreviations: PBS buffer—4% paraformaldehyde in 0.1 M phosphate buffer; PBST—PBS buffer supplemented with 0.3% Triton X-100; FMRF-ip—FMRF-immunopositive nerve fibers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreshchenko, N.D. A Study of the Mechanisms of Action of FMRF-Like Peptides in Inducing Muscle Contraction in Planarians (Platyhelminthes). BIOPHYSICS 66, 472–482 (2021). https://doi.org/10.1134/S000635092103009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635092103009X

Keywords:

Navigation