Skip to main content
Log in

The efficiency of blood photomodification with therapeutic doses of optical radiation of different wavelengths

  • Biophysics of Complex Systems
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Spectra of radiation penetration depth into the blood and skin tissues were calculated for the wavelength range of 405 to 950 nm with the optical properties of biological tissues taken into account. The proportion of radiation that reached the blood in the blood vessel in the case of supravenous irradiation of blood was estimated. Optimal wavelengths that allowed efficient formation of molecular oxygen in the blood due to photodissociation of oxyhemoglobin upon intravenous and supravenous irradiation of blood were determined. Changes in blood oxygenation parameters characteristic of phototherapy, such as the degree of hemoglobin saturation with oxygen, oxyhemoglobin concentration, partial pressure of oxygen, and the concentrations of certain products of metabolism initiated by the photodissociation of oxyhemoglobin, have been demonstrated for optical radiation of different wavelengths. The physical causes of changes in oxygenation characteristics and metabolic product levels induced by photohemotherapy are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ILIB:

intravenous laser irradiation of blood

SLIB:

supravenous laser irradiation of blood

SIB:

supravenous irradiation of blood by non-laser sources

IR:

infrared

ROS:

reactive oxygen species

oxyHb:

oxyhemoglobin

References

  1. V. I. Karandashov, E. B. Petukhov, and V. S. Zrodnikov, Phototherapy (Meditsina, Moscow, 2001) [in Russian].

    Google Scholar 

  2. G. A. Zalesskaya, Blood Photomodification by Therapeutic Doses of Optical Radiation (Belorusskaya Nauka, Minsk, 2014) [in Russian].

    Google Scholar 

  3. G. I. Klebanov, N. Yu. Shuraeva, T. V. Chichuk, et al., Biophysics (Moscow) 51 (2), 285 (2006).

    Article  Google Scholar 

  4. G. A. Zalesskaya and E. G. Sambor, Zh. Prikl. Spektrosk. 72 (2), 230 (2005).

    Google Scholar 

  5. G. A. Zalesskaya, V. S. Ulashchik, Zh. Prikl. Spektrosk. 76 (1), 51 (2009).

    Google Scholar 

  6. G. A. Zalesskaya and T. O. Maslova, Optika Spektrosk. 110 (2), 304 (2011).

    ADS  Google Scholar 

  7. G. A. Zalesskaya, Zh. Prikl. Spectrosk. 81 (3), 433 (2014).

    Google Scholar 

  8. N. K. Zenkov, V. Z. Lankin, and E. B. Menshchikova, Oxidative Stress: Biochemical and Pathophysiological Aspects (MAIK “Nauka/Interperiodika, Moscow, 2001) [in Russian]

    Google Scholar 

  9. N. Boosschart, G. J. Edelman, M. C. Aalders, et al., Lasers Med. Sci. 29, 453 (2014).

    Article  Google Scholar 

  10. J. L. Sandell and T. C. Zhu, Biophotonics (11–12), 773 (2011).

    Article  Google Scholar 

  11. T. Lister, P. A. Wright, and P. H. Chappel, J. Biomed. Optics 17 (9), 090901 (2012).

    Article  ADS  Google Scholar 

  12. A. E. Pushkareva, Methods of Mathematical Modeling in Biotissue Optics (ITMO, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  13. V. V. Barun, A. P. Ivanov, A. N. Bashkatov, et al., Optika Spektrosk. 115 (2), 235 (2013).

    Google Scholar 

  14. J. W. Petrich, C. Poyart, and J. L. Martin, Biochemistry 27 (11), 4049 (1988).

    Article  Google Scholar 

  15. N. Yang, S. Zang, et al., Biochem. Biophys. Res. Commun. 353, 953 (2007).

    Article  Google Scholar 

  16. B. M. Dzhagapov, V. S. Chirvonyi, and G. P. Gurinovich, in Laser Picosecond Spectroscopy and Photo-chemistry of Biomolecules, Ed. by V. S. Letokhov (Moscow, 1987), pp. 180–212.

  17. I. I. Ivanov, A. V. Loktyushin, R. A. Gus’kova, et al., Dokl. Biochem. Biophys. 414, 137 (2007).

    Article  Google Scholar 

  18. D. E. Hudson, D. O. Hudson, J. M. Winner, and B. D. Richardson, Photomed. Laser Surgery 31 (4), 163 (2013).

    Article  Google Scholar 

  19. P. J. Kolari, Arch. Dermatol. Res. 277, 342 (1985).

    Article  Google Scholar 

  20. T. V. Machneva, D. M. Protopopov, Yu. A. Vladimirov, and A. N. Osipov, Biophysics (Moscow) 53 (5), 463 (2008).

    Article  Google Scholar 

  21. V. V. Barun, A. P. Ivanov, A. V. Volotovskaya, V. S. Ulashchik, Zh. Prikl. Spektrosk. 74 (3), 387 (2007).

    Google Scholar 

  22. S. S. Yesman, S. O. Mamilov, D. V. Veligotsky, and A. I. Gisbrecht, Lasers Med. Sci. 30 (9), (2015). doi 10.1007/s10103-015-1838-y

    Google Scholar 

  23. N. V. Botin, T. Z. Uspenskaya, and S. V. Moskvin, Fotobiol. Fotomed. 4, 48 (2009).

    Google Scholar 

  24. G. A. Zalesskaya, N. V. Akulich, A. V. Marochkov, et al., Zh. Prikl. Spektrosk. 77 (3), 451 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Zalesskaya.

Additional information

Original Russian Text © G.A. Zalesskaya, 2017, published in Biofizika, 2017, Vol. 62, No. 3, pp. 604–613.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalesskaya, G.A. The efficiency of blood photomodification with therapeutic doses of optical radiation of different wavelengths. BIOPHYSICS 62, 490–498 (2017). https://doi.org/10.1134/S0006350917030265

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917030265

Keywords

Navigation