Skip to main content
Log in

The TERT Promoter: A Key Player in the Fight for Cancer Cell Immortality

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review describes the role of telomeres and telomerase in tumor progression, as well as various mechanisms of the activation of telomerase reverse transcriptase (TERT) expression in CNS tumors and other cancers. The main mechanism of TERT activation involves acquisition of somatic mutations by the TERT gene promoter (TERTp). The article presents information on the TERTp structure and transcription factors directly interacting with TERTp and regulating its transcription. The prospects of using the mutational status of TERTp as a prognostic marker of CNS malignancies and other tumors with a common profile of TERTp mutations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

CNS:

central nervous system

TERT:

telomerase reverse transcriptase

TERTp :

TERT promoter

References

  1. Walsh, K. M., Wiencke, J. K., Lachance, D. H., Wiemels, J. L., Molinaro, A. M., Eckel-Passow, J. E., Jenkins, R. B., and Wrensch, M. R. (2015) Telomere maintenance and the etiology of adult glioma, Neuro Oncol., 17, 1445-1452, https://doi.org/10.1093/neuonc/nov082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heidenreich, B., and Kumar, R. (2017) TERT promoter mutations in telomere biology, Mutat. Res. Rev. Mutat. Res., 771, 15-31, https://doi.org/10.1016/j.mrrev.2016.11.002.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, T., Yuan, X., and Xu, D. (2016) Cancer-specific telomerase reverse transcriptase (TERT) promoter mutations: biological and clinical implications, Genes, 7, 38, https://doi.org/10.3390/genes7070038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yuan, X., Dai, M., and Xu, D. (2020) TERT promoter mutations and GABP transcription factors in carcinogenesis: More foes than friends, Cancer Lett., 493, 1-9, https://doi.org/10.1016/j.canlet.2020.07.003.

    Article  CAS  PubMed  Google Scholar 

  5. Killela, P. J., Reitman, Z. J., Jiao, Y., Bettegowda, C., Agrawal, N., Diaz, L. A. Jr, Friedman, A. H., et al. (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal, Proc. Natl. Acad. Sci. USA, 110, 6021-6026, https://doi.org/10.1073/pnas.1303607110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hafezi, F., Perez Bercoff, D. (2020) The solo play of TERT promoter mutations, Cells, 9, 749, https://doi.org/10.3390/cells9030749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hosen, M. I., Sheikh, M., Zvereva, M., Scelo, G., Forey, N., Durand, G., Voegele, C., Poustchi, H., et al. (2020) Urinary TERT promoter mutations are detectable up to 10 years prior to clinical diagnosis of bladder cancer: evidence from the Golestan cohort study, EBioMed., 53, 102643, https://doi.org/10.1016/j.ebiom.2020.102643.

    Article  Google Scholar 

  8. Wang, N., Liu, T., Sofiadis, A., Juhlin, C. C., Zedenius, J., Höög, A., Larsson, C., and Xu, D. (2014) TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA, Cancer, 120, 2965-2979, https://doi.org/10.1002/cncr.28800.

    Article  CAS  PubMed  Google Scholar 

  9. Hysek, M., Paulsson, J. O., Jatta, K., Shabo, I., Stenman, A., Höög, A., Larsson, C., Zedenius, J., and Juhlin, C. C. (2019) Clinical routine TERT promoter mutational screening of follicular thyroid tumors of uncertain malignant potential (FT-UMPs): A useful predictor of metastatic disease, Cancers, 11, 1443, https://doi.org/10.3390/cancers11101443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nault, J. C., Calderaro, J., Di Tommaso, L., Balabaud, C., Zafrani, E. S., Bioulac-Sage, P., Roncalli, M., and Zucman-Rossi, J. (2014) Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis, Hepatology, 60, 1983-1992, https://doi.org/10.1002/hep.27372.

    Article  CAS  PubMed  Google Scholar 

  11. Shain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., Dummer, R., North, J., Pincus, L., Ruben, B., Rickaby, W., D’Arrigo, C., Robson, A., and Bastian, B. C. (2015) The genetic evolution of melanoma from precursor lesions, N. Engl. J. Med., 373, 1926-1936, https://doi.org/10.1056/NEJMoa1502583.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, L., Montironi, R., and Lopez-Beltran, A. (2017) TERT promoter mutations occur frequently in urothelial papilloma and papillary urothelial neoplasm of low malignant potential, Eur. Urol., 71, 497-498, https://doi.org/10.1016/j.eururo.2016.12.008.

    Article  CAS  PubMed  Google Scholar 

  13. Rahman, M., Deleyrolle, L., Vedam-Mai, V., Azari, H., Abd-El-Barr, M., and Reynolds, B. A. (2011) The cancer stem cell hypothesis: failures and pitfalls, Neurosurgery, 68, 531-545, https://doi.org/10.1227/NEU.0b013e3181ff9eb5.

    Article  PubMed  Google Scholar 

  14. Prager, B. C., Bhargava, S., Mahadev, V., Hubert, C. G., and Rich, J. N. (2020) Glioblastoma stem cells: driving resilience through chaos, Trends Cancer, 6, 223-235, https://doi.org/10.1016/j.trecan.2020.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Walcher, L., Kistenmacher, A. K., Suo, H., Kitte, R., Dluczek, S., Strauß, A., Blaudszun, A. R., Yevsa, T., Fricke, S., and Kossatz-Boehlert, U. (2020) Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies, Front. Immunol., 11, 1280, https://doi.org/10.3389/fimmu.2020.01280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suvà, M. L., and Tirosh, I. (2020) The glioma stem cell model in the era of single-cell genomics, Cancer Cell, 37, 630-636, https://doi.org/10.1016/j.ccell.2020.04.001.

    Article  CAS  PubMed  Google Scholar 

  17. Crende, O., García-Gallastegui, P., Luzuriaga, J., Badiola, I., de la Hoz, C., Unda, F., Ibarretxe, G., and Pineda, J. R. (2020) Is there such a thing as a genuine cancer stem cell marker? Perspectives from the gut, the brain and the dental pulp, Biology, 9, 426, https://doi.org/10.3390/biology9120426.

    Article  CAS  PubMed  Google Scholar 

  18. Ignatova, T. N., Kukekov, V. G., Laywell, E. D., Suslov, O. N., Vrionis, F. D., and Steindler, D. A. (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro, Glia, 39, 193-206, https://doi.org/10.1002/glia.10094.

    Article  PubMed  Google Scholar 

  19. Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., and Kornblum, H. I. (2003) Cancerous stem cells can arise from pediatric brain tumors, Proc. Natl. Acad. Sci. USA, 100, 15178-15183, https://doi.org/10.1073/pnas.2036535100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., and Dirks, P. B. (2004) Identification of human brain tumour initiating cells, Nature, 432, 396-401, https://doi.org/10.1038/nature03128.

    Article  CAS  PubMed  Google Scholar 

  21. Laks, D. R., Masterman-Smith, M., Visnyei, K., Angenieux, B., Orozco, N. M., Foran, I., et al. (2009) Neurosphere formation is an independent predictor of clinical outcome in malignant glioma, Stem Cells, 27, 980-987, https://doi.org/10.1002/stem.15.

    Article  PubMed  Google Scholar 

  22. Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A. (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma, Cancer Res., 64, 7011-7021, https://doi.org/10.1158/0008-5472.CAN-04-1364.

    Article  CAS  PubMed  Google Scholar 

  23. Boyd, N. H., Tran, A. N., Bernstock, J. D., Etminan, T., Jones, A. B., Gillespie, G. Y., Friedman, G. K., and Hjelmeland, A. B. (2021) Glioma stem cells and their roles within the hypoxic tumor microenvironment, Theranostics, 11, 665-683, https://doi.org/10.7150/thno.41692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grassi, E. S., Ghiandai, V., and Persani, L. (2021) Thyroid cancer stem-like cells: from microenvironmental niches to therapeutic strategies, J. Clin Med., 10, 1455, https://doi.org/10.3390/jcm10071455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jian, Z., Strait, A., Jimeno, A., and Wang, X. J. (2017) Cancer stem cells in squamous cell carcinoma, J. Invest. Dermatol., 137, 31-37, https://doi.org/10.1016/j.jid.2016.07.033.

    Article  CAS  PubMed  Google Scholar 

  26. Aghaalikhani, N., Rashtchizadeh, N., Shadpour, P., Allameh, A., and Mahmoodi, M. (2019) Cancer stem cells as a therapeutic target in bladder cancer, J. Cell. Physiol., 234, 3197-3206, https://doi.org/10.1002/jcp.26916.

    Article  CAS  PubMed  Google Scholar 

  27. O'Conor, C. J., Chen, T., González, I., Cao, D., and Peng, Y. (2018) Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker, Biomark Med., 12, 813-820, https://doi.org/10.2217/bmm-2017-0398.

    Article  CAS  PubMed  Google Scholar 

  28. Najafi, M., Farhood, B., and Mortezaee, K. (2019) Cancer stem cells (CSCs) in cancer progression and therapy, J. Cell Physiol., 234, 8381-8395, https://doi.org/10.1002/jcp.27740.

    Article  CAS  PubMed  Google Scholar 

  29. Torres-Montaner, A. (2021) The telomere complex and the origin of the cancer stem cell, Biomark Res., 9, 81, https://doi.org/10.1186/s40364-021-00339-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blackburn, E. H. (2005) Telomerase and Cancer: Kirk A. Landon--AACR prize for basic cancer research lecture, Mol Cancer Res., 3, 477-482, https://doi.org/10.1158/1541-7786.MCR-05-0147.

    Article  CAS  PubMed  Google Scholar 

  31. Zvereva, M. I., Shcherbakova, D. M., and Dontsova, O. A. (2010) Telomerase: structure, functions, and activity regulation, Biochemistry (Moscow), 75, 1563-1583, https://doi.org/10.1134/S0006297910130055.

    Article  CAS  PubMed  Google Scholar 

  32. Xu, L., Li, S., and Stohr, B. A. (2013) The role of telomere biology in cancer, Annu. Rev. Pathol., 8, 49-78, https://doi.org/10.1146/annurev-pathol-020712-164030.

    Article  CAS  PubMed  Google Scholar 

  33. Suram, A., Kaplunov, J., Patel, P. L., Ruan, H., Cerutti, A., Boccardi, V., Fumagalli, M., Di Micco, R., Mirani, N., Gurung, R. L., Hande, M. P., d’Adda di Fagagna, F., and Herbig, U. (2012) Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions, EMBO J., 31, 2839-2851, https://doi.org/10.1038/emboj.2012.132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bernadotte, A., Mikhelson, V. M., and Spivak, I. M. (2016) Markers of cellular senescence. Telomere shortening as a marker of cellular senescence, Aging, 8, 3-11, https://doi.org/10.18632/aging.100871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shay, J. W. (2016) Role of telomeres and telomerase in aging and cancer, Cancer Discov., 6, 584-593, https://doi.org/10.1158/2159-8290.CD-16-0062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saunders, C. N., Kinnersley, B., Culliford, R., Cornish, A. J., Law, P. J., and Houlston, R. S. (2022) Relationship between genetically determined telomere length and glioma risk, Neuro Oncol., 24, 171-181, https://doi.org/10.1093/neuonc/noab208.

    Article  PubMed  Google Scholar 

  37. Ennour-Idrissi, K., Maunsell, E., and Diorio, C. (2017) Telomere length and breast cancer prognosis: a systematic review, Cancer Epidemiol. Biomarkers Prev., 26, 3-10, https://doi.org/10.1158/1055-9965.EPI-16-0343.

    Article  CAS  PubMed  Google Scholar 

  38. Caini, S., Raimondi, S., Johansson, H., De Giorgi, V., Zanna, I., Palli, D., and Gandini, S. (2015) Telomere length and the risk of cutaneous melanoma and non-melanoma skin cancer: a review of the literature and meta-analysis, J. Dermatol. Sci., 80, 168-174, https://doi.org/10.1016/j.jdermsci.2015.08.003.

    Article  CAS  PubMed  Google Scholar 

  39. Ventura, A., Pellegrini, C., Cardelli, L., Rocco, T., Ciciarelli, V., Peris, K., and Fargnoli, M. C. (2019) Telomeres and telomerase in cutaneous squamous cell carcinoma, Int. J. Mol. Sci., 20, 1333, https://doi.org/10.3390/ijms20061333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Vitis, M., Berardinelli, F., and Sgura, A. (2018) Telomere length maintenance in cancer: at the crossroad between telomerase and alternative lengthening of telomeres (ALT), Int. J. Mol. Sci., 19, 606, https://doi.org/10.3390/ijms19020606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Srinivas, N., Rachakonda, S., and Kumar, R. (2020) Telomeres and telomere length: a general overview, Cancers, 12, 558, https://doi.org/10.3390/cancers12030558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Juratli, T. A., Thiede, C., Koerner, M. V. A., Tummala, S. S., Daubner, D., Shankar, G. M., Williams, E. A., et al. (2017) Intratumoral heterogeneity and TERT promoter mutations in progressive/higher-grade meningiomas, Oncotarget, 8, 109228-109237, https://doi.org/10.18632/oncotarget.22650.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huang, F. W., Bielski, C. M., Rinne, M. L., Hahn, W. C., Sellers, W. R., Stegmeier, F., Garraway, L. A., and Kryukov, G. V. (2015) TERT promoter mutations and monoallelic activation of TERT in cancer, Oncogenesis, 4, e176, https://doi.org/10.1038/oncsis.2015.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brennan, C. W., Verhaak, R. G. W., McKenna, A., Campos, B., Noushmehr, H., Salama, S. R., Zheng, S., Chakravarty, D., Sanborn, J. Z., Berman, S. H., Beroukhim, R., Bernard, B., Wu, C.-J., Genovese, G., Shmulevich, I., et al. (2013) The Somatic Genomic Landscape of Glioblastoma, Cell, 155, 462-477, https://doi.org/10.1016/j.cell.2013.09.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bell, R. J., Rube, H. T., Kreig, A., Mancini, A., Fouse, S. D., Nagarajan, R. P., Choi, S., Hong, C., He, D., Pekmezci, M., et al. (2015) Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer, Science, 348, 1036-1039, https://doi.org/10.1126/science.aab0015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pierini, T., Nardelli, C., Lema Fernandez, A. G., Pierini, V., Pellanera, F., Nofrini, V., Gorello, P., Moretti, M., Arniani, S., Roti, G., Wiencke, J. K., Wrensch, M. R., Chang, S. M., Walsh, K. M., Myong, S., Song, J. S., and Costello, J. F. (2020) New somatic TERT promoter variants enhance the telomerase activity in glioblastoma, Acta Neuropathol. Commun., 8, 145, https://doi.org/10.1186/s40478-020-01022-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heidenreich, B., Nagore, E., Rachakonda, P. S., Garcia-Casado, Z., Requena, C., Traves, V., Becker, J., Soufir, N., Hemminki, K., and Kumar, R. (2014) Telomerase reverse transcriptase promoter mutations in primary cutaneous melanoma, Nat. Commun., 5, 3401, https://doi.org/10.1038/ncomms4401.

    Article  CAS  PubMed  Google Scholar 

  48. Xie, H., Liu, T., Wang, N., Björnhagen, V., Höög, A., Larsson, C., Lui, W., and Xu, D. (2014) TERT promoter mutations and gene amplification: promoting TERT expression in Merkel cell carcinoma, Oncotarget, 5, 10048-10057, https://doi.org/10.18632/oncotarget.2491.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Barthel, F. P., Wei, W., Tang, M., Martinez-Ledesma, E., Hu, X., Amin, S. B., Akdemir, K. C., Seth, S., Song, X., Wang, Q., Lichtenberg, T., Hu, J., Zhang, J., Zheng, S., and Verhaak, R. G. (2017) Systematic analysis of telomere length and somatic alterations in 31 cancer types, Nat. Genet., 49, 349-357, https://doi.org/10.1038/ng.3781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dratwa, M., Wysoczańska, B., Łacina, P., Kubik, T., and Bogunia-Kubik, K. (2020) TERT-regulation and roles in cancer formation, Front. Immunol., 11, 589929, https://doi.org/10.3389/fimmu.2020.589929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Günes, C., Wezel, F., Southgate, J., and Bolenz, C. (2018) Implications of TERT promoter mutations and telomerase activity in urothelial carcinogenesis, Nat. Rev. Urol., 15, 386-393, https://doi.org/10.1038/s41585-018-0001-5.

    Article  CAS  PubMed  Google Scholar 

  52. Sbizzera, M., Descotes, F., Arber, T., Neuville, P., and Ruffion, A. (2022) Bladder cancer detection in patients with neurogenic bladder: are cystoscopy and cytology effective, and are biomarkers pertinent as future diagnostic tools? A scoping review, World J. Urol., 40, 1897-1913, https://doi.org/10.1007/s00345-022-03943-2.

    Article  CAS  PubMed  Google Scholar 

  53. McKelvey, B. A., Umbricht, C. B., and Zeiger, M. A. (2020) Telomerase reverse transcriptase (TERT) regulation in thyroid cancer: a review, Front. Endocrinol., 11, 485, https://doi.org/10.3389/fendo.2020.00485.

    Article  Google Scholar 

  54. Donati, B., and Ciarrocchi, A. (2019) Telomerase and telomeres biology in thyroid cancer, Int. J. Mol. Sci., 20, 2887, https://doi.org/10.3390/ijms20122887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Romei, C., and Elisei, R. (2021) A narrative review of genetic alterations in primary thyroid epithelial cancer, Int. J. Mol. Sci., 22, 1726, https://doi.org/10.3390/ijms22041726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zanna, I., Caini, S., Raimondi, S., Saieva, C., Masala, G., Massi, D., Cocorocchio, E., Queirolo, P., Stanganelli, I., and Gandini, S. (2021) Germline MC1R variants and frequency of somatic BRAF, NRAS, and TERT mutations in melanoma: literature review and meta-analysis, Mol. Carcinog., 60, 167-171, https://doi.org/10.1002/mc.23280.

    Article  CAS  PubMed  Google Scholar 

  57. Motaparthi, K., Kim, J., Andea, A. A., Missall, T. A., Novoa, R. A., Vidal, C. I., Fung, M. A., and Emanuel, P. O. (2020) TERT and TERT promoter in melanocytic neoplasms: Current concepts in pathogenesis, diagnosis, and prognosis, J. Cutan. Pathol., 47, 710-719, https://doi.org/10.1111/cup.13691.

    Article  PubMed  Google Scholar 

  58. Griewank, K. G., Murali, R., Puig-Butille, J. A., Schilling, B., Livingstone, E., Potrony, M., et al. (2014) TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma, J. Natl. Cancer Inst., 106, dju246, https://doi.org/10.1093/jnci/dju246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gandini, S., Zanna, I., De Angelis, S., Palli, D., Raimondi, S., Ribero, S., Masala, G., Suppa, M., Bellerba, F., Corso, F., Nezi, L., Nagore, E., and Caini, S. (2021) TERT promoter mutations and melanoma survival: a comprehensive literature review and meta-analysis, Crit. Rev. Oncol. Hematol., 160, 103288, https://doi.org/10.1016/j.critrevonc.2021.103288.

    Article  PubMed  Google Scholar 

  60. Chiba, K., Johnson, J. Z., Vogan, J. M., Costa, B. M., Mancini, A., and Song, J. S. (2015) Cancer-associated TERT promoter mutations abrogate telomerase silencing, Elife, 4, e07918, https://doi.org/10.7554/eLife.07918.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li, C., Wu, S., Wang, H., Bi, X., Yang, Z., Du, Y., He, L., Cai, Z., Wang, J., and Fan, Z. (2015) The C228T mutation of TERT promoter frequently occurs in bladder cancer stem cells and contributes to tumorigenesis of bladder cancer, Oncotarget, 6, 19542-19551, https://doi.org/10.18632/oncotarget.4295.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li, X., Qian, X., Wang, B., Xia, Y., Zheng, Y., Du, L., Xu, D., Xing, D., DePinho, R. A., and Lu, Z. (2020) Programmable base editing of mutated TERT promoter inhibits brain tumour growth, Nat. Cell Biol., 22, 282-288, https://doi.org/10.1038/s41556-020-0471-6.

    Article  CAS  PubMed  Google Scholar 

  63. Hafezi, F., Jaxel, L., Lemaire, M., Turner, J. D., and Perez-Bercoff, D. (2021) TERT promoter mutations increase sense and antisense transcription from the TERT promoter, Biomedicines, 9, 1773, https://doi.org/10.3390/biomedicines9121773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patel, B., Taiwo, R., Kim, A. H., and Dunn, G. P. (2020) TERT, a promoter of CNS malignancies, Neurooncol. Adv., 2, vdaa025, https://doi.org/10.1093/noajnl/vdaa025.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Goutagny, S., Nault, J. C., Mallet, M., Henin, D., Rossi, J. Z., and Kalamarides, M. (2014) High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression, Brain Pathol., 24, 184-189, https://doi.org/10.1111/bpa.12110.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, Y., Chen, Y., Yang, C., Seger, N., Hesla, A. C., Tsagkozis, P., Larsson, O., Lin, Y., and Haglund, F. (2021) TERT promoter mutation is an objective clinical marker for disease progression in chondrosarcoma, Mod. Pathol., 34, 2020-2027, https://doi.org/10.1038/s41379-021-00848-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paulsson, J. O., Mu, N., Shabo, I., Wang, N., Zedenius, J., Larsson, C., and Juhlin, C. C. (2018) TERT aberrancies: a screening tool for malignancy in follicular thyroid tumours, Endocr. Relat. Cancer, 25, 723-733, https://doi.org/10.1530/ERC-18-0050.

    Article  CAS  PubMed  Google Scholar 

  68. Rachakonda, P. S., Hosen, I., de Verdier, P. J., Fallah, M., Heidenreich, B., Ryk, C., Wiklund, N. P., Steineck, G., Schadendorf, D., Hemminki, K., and Kumar, R. (2013) TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism, Proc. Natl. Acad. Sci. USA, 110, 17426-17431, https://doi.org/10.1073/pnas.1310522110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gao, K., Li, G., Qu, Y., Wang, M., Cui, B., Ji, M., Shi, B., and Hou, P. (2016) TERT promoter mutations and long telomere length predict poor survival and radiotherapy resistance in gliomas, Oncotarget, 7, 8712-8725, https://doi.org/10.18632/oncotarget.6007.

    Article  PubMed  Google Scholar 

  70. Mitchell, T. J., Turajlic, S., Rowan, A., Nicol, D., Farmery, J. H. R., O’Brien, T., Martincorena, I., Tarpey, P., et al. (2018) TRACERx renal consortium. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal, Cell, 173, 611-623, https://doi.org/10.1016/j.cell.2018.02.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patrushev, L. I., and Kovalenko, T. F. (2014) Functions of noncoding sequences in mammalian genomes, Biochemistry (Moscow), 79, 1442-1469, https://doi.org/10.1134/S0006297914130021.

    Article  CAS  PubMed  Google Scholar 

  72. Svahn, F., Juhlin, C. C., Paulsson, J. O., Fotouhi, O., Zedenius, J., Larsson, C., and Stenman, A. (2018) Telomerase reverse transcriptase promoter hypermethylation is associated with metastatic disease in abdominal paraganglioma, Clin. Endocrinol., 88, 343-345, https://doi.org/10.1111/cen.13513.

    Article  Google Scholar 

  73. Lee, D. D., Leão, R., Komosa, M., Gallo, M., Zhang, C. H., Lipman, T., Remke, M., Heidari, A., Nunes, N. M., et al. (2019) DNA hypermethylation within TERT promoter upregulates TERT expression in cancer, J. Clin. Invest., 129, 223-229, https://doi.org/10.1172/JCI121303.

    Article  PubMed  Google Scholar 

  74. Renaud, S., Loukinov, D., Bosman, F. T., Lobanenkov, V., and Benhattar, J. (2005) CTCF binds the proximal exonic region of hTERT and inhibits its transcription, Nucleic Acids Res., 33, 6850-6860, https://doi.org/10.1093/nar/gki989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yuan, X., Larsson, C., Xu, D. (2019) Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players, Oncogene, 38, 6172-6183, https://doi.org/10.1038/s41388-019-0872-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Malhotra, S., Freeberg, M. A., Winans, S. J., Taylor, J., and Beemon, K. L. (2017) A novel long non-coding RNA in the hTERT promoter region regulates hTERT expression, Noncoding RNA, 4, 1, https://doi.org/10.3390/ncrna4010001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome, Nature, 489, 57-74, https://doi.org/10.1038/nature11247.

    Article  CAS  Google Scholar 

  78. Cancer Genome Atlas Research Network, Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J. M. (2013) The cancer genome atlas pan-cancer analysis project, Nat. Genet., 45, 1113-1120, https://doi.org/10.1038/ng.2764.

    Article  CAS  PubMed Central  Google Scholar 

  79. Skvortsov, D. A., Rubtsova, M. P., Zvereva, M. E., Kiselev, F. L., and Dontsova, O. A. (2009) Telomerase regulation in oncogenesis [in Russian], Acta Nature, 51, 51-67, https://doi.org/10.32607/20758251-2009-1-1-51-67.

    Article  Google Scholar 

  80. McDuff, F. O., Naud, J. F., Montagne, M., Sauvé, S., and Lavigne, P. (2009) The Max homodimeric b-HLH-LZ significantly interferes with the specific heterodimerization between the c-Myc and Max b-HLH-LZ in absence of DNA: a quantitative analysis, J. Mol. Recognit., 22, 261-269, https://doi.org/10.1002/jmr.938.

    Article  CAS  PubMed  Google Scholar 

  81. Xu, D., Popov, N., Hou, M., Wang, Q., Björkholm, M., Gruber, A., Menkel, A. R., and Henriksson, M. (2001) Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells, Proc. Natl. Acad. Sci. USA, 98, 3826-3831, https://doi.org/10.1073/pnas.071043198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kyo, S., Takakura, M., Taira, T., Kanaya, T., Itoh, H., Yutsudo, M., Ariga, H., and Inoue, M. (2000) Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT), Nucleic Acids Res., 28, 669-677, https://doi.org/10.1093/nar/28.3.669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kirkpatrick, K. L., Ogunkolade, W., Elkak, A. E., Bustin, S., Jenkins, P., Ghilchick, M., Newbold, R. F., and Mokbel, K. (2003) hTERT expression in human breast cancer and non-cancerous breast tissue: correlation with tumour stage and c-Myc expression, Breast Cancer Res. Treat., 77, 277-284, https://doi.org/10.1023/A:1021849217054.

    Article  CAS  PubMed  Google Scholar 

  84. Dwyer, J. M., and Liu, J.-P. (2010) Ets2 transcription factor, telomerase activity and breast cancer, Clin. Exp. Pharmacol. Physiol., 37, 83-87, https://doi.org/10.1111/j.1440-1681.2009.05236.x.

    Article  CAS  PubMed  Google Scholar 

  85. Xu, D., Dwyer, J., Li, H., Duan, W., and Liu, J. P. (2008) Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc, J. Biol. Chem., 283, 23567-23580, https://doi.org/10.1074/jbc.M800790200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kyo, S., Takakura, M., Fujiwara, T., and Inoue, M. (2008) Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers, Cancer Sci., 99, 1528-1538, https://doi.org/10.1111/j.1349-7006.2008.00878.x.

    Article  CAS  PubMed  Google Scholar 

  87. Cheng, D., Zhao, Y., Wang, S., Jia, W., Kang, J., and Zhu, J. (2015) Human telomerase reverse transcriptase (hTERT) transcription requires Sp1/Sp3 binding to the promoter and a permissive chromatin environment, J. Biol. Chem., 290, 30193-30203, https://doi.org/10.1074/jbc.M115.662221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lou, F., Chen, X., Jalink, M., Zhu, Q., Ge, N., Zhao, S., Fang, X., Fan, Y., Björkholm, M., Liu, Z., and Xu, D. (2007) The opposing effect of hypoxia-inducible factor-2alpha on expression of telomerase reverse transcriptase, Mol. Cancer Res., 5, 793-800, https://doi.org/10.1158/1541-7786.MCR-07-0065.

    Article  CAS  PubMed  Google Scholar 

  89. Novikov, V. E., and Levchenkova, O. S. (2013) Hypoxia-induced factor (HIF-1α) as a target for pharmacological action, Rev. Clin. Pharmacol. Drug Ther., 11, 8-16, https://doi.org/10.17816/RCF1128-16.

    Article  Google Scholar 

  90. Yatabe, N., Kyo, S., Maida, Y., Nishi, H., Nakamura, M., Kanaya, T., Tanaka, M., Isaka, K., Ogawa, S., and Inoue, M. (2004) HIF-1-mediated activation of telomerase in cervical cancer cells, Oncogene, 23, 3708-3715, https://doi.org/10.1038/sj.onc.1207460.

    Article  CAS  PubMed  Google Scholar 

  91. Nishi, H., Nakada, T., Kyo, S., Inoue, M., Shay, J. W., and Isaka, K. (2004) Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT), Mol. Cell. Biol., 24, 6076-6083, https://doi.org/10.1128/MCB.24.13.6076-6083.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Koshiji, M., Kageyama, Y., Pete, E. A., Horikawa, I., Barrett, J. C., and Huang, L. E. (2004) HIF-1alpha induces cell cycle arrest by functionally counteracting Myc, EMBO J., 23, 1949-1956, https://doi.org/10.1038/sj.emboj.7600196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grebennikova, T. A., Belaya, Zh. E., Rozhinskaya, L. Ya., and Melnichenko, G. A. (2016) The canonical Wnt/β-catenin signaling pathway: from history of discovery to clinical application [in Russian], Ther. Arch., 88, 74-81, https://doi.org/10.17116/terarkh201688674-81.

    Article  CAS  Google Scholar 

  94. Behrooz, A. B., and Syahir, A. (2021) Could we address the interplay between CD133, Wnt/β-Catenin, and TERT signaling pathways as a potential target for glioblastoma therapy? Front. Oncol., 11, 642719, https://doi.org/10.3389/fonc.2021.642719.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hoffmeyer, K., Raggioli, A., Rudloff, S., Anton, R., Hierholzer, A., Del Valle, I., Hein, K., Vogt, R., and Kemler, R. (2012) Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells, Science, 336, 1549-1554, https://doi.org/10.1126/science.1218370.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, Y., Toh, L., Lau, P., and Wang, X. (2012) Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer, J. Biol. Chem., 287, 32494-32511, https://doi.org/10.1074/jbc.M112.368282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Park, J. I., Venteicher, A. S., Hong, J. Y., Choi, J., Jun, S., Shkreli, M., Chang, W., Meng, Z., Cheung, P., Ji, H., McLaughlin, M., Veenstra, T. D., Nusse, R., McCrea, P. D., and Artandi, S. E. (2009) Telomerase modulates Wnt signalling by association with target gene chromatin, Nature, 460, 66-72, https://doi.org/10.1038/nature08137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, K., Chen, L., Li, L., Qu, S., Yu, B., Sun, Y., Wan, F., Chen, X., Liang, R., and Zhu, X. (2020) A positive feedback loop between Wnt/β-catenin signaling and hTERT regulates the cancer stem cell-like traits in radioresistant nasopharyngeal carcinoma cells, J. Biol. Chem., 121, 4612-4622, https://doi.org/10.1002/jcb.29681.

    Article  CAS  Google Scholar 

  99. Oh, S., Song, Y., Yim, J., and Kim, T. K. (1999) The Wilms’ tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene, J. Biol. Chem., 274, 37473-37478, https://doi.org/10.1074/jbc.274.52.37473.

    Article  CAS  PubMed  Google Scholar 

  100. Sitaram, R. T., Degerman, S., Ljungberg, B., Andersson, E., Oji, Y., Sugiyama, H., Roos, G., and Li, A. (2010) Wilms’ tumour 1 can suppress hTERT gene expression and telomerase activity in clear cell renal cell carcinoma via multiple pathways, Br. J. Cancer, 103, 1255-1262, https://doi.org/10.1038/sj.bjc.6605878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kijima, N., Hosen, N., Kagawa, N., Hashimoto, N., Kinoshita, M., Oji, Y., Sugiyama, H., and Yoshimine, T. (2014) Wilms’ tumor 1 is involved in tumorigenicity of glioblastoma by regulating cell proliferation and apoptosis, Anticancer Res., 34, 61-67.

    CAS  PubMed  Google Scholar 

  102. Somasundaram, A., Ardanowski, N., Opalak, C. F., Fillmore, H. L., Chidambaram, A., and Broaddus, W. C. (2014) Wilms tumor 1 gene, CD97, and the emerging biogenetic profile of glioblastoma, Neurosurg. Focus, 37, E14, https://doi.org/10.3171/2014.9.FOCUS14506.

    Article  PubMed  Google Scholar 

  103. Oji, Y., Suzuki, T., Nakano, Y., Maruno, M., Nakatsuka, S., Jomgeow, T., Abeno, S., Tatsumi, N., Yokota, A., Aoyagi, S., et al. (2004) Overexpression of the Wilms’ tumor gene W T1 in primary astrocytic tumors, Cancer Sci., 95, 822-827, https://doi.org/10.1111/j.1349-7006.2004.tb02188.x.

    Article  CAS  PubMed  Google Scholar 

  104. Buchwalter, G., Gross, C., and Wasylyk, B. (2004) Ets ternary complex transcription factors, Gene, 324, 1-14, https://doi.org/10.1016/j.gene.2003.09.028.

    Article  CAS  PubMed  Google Scholar 

  105. Dittmer, J. (2015) Ets transcription factors. Encyclopedia of Cancer (Schwab, M., ed) Springer-Heidelberg, Berlin, https://doi.org/10.1007/978-3-662-46875-3_2034.

  106. Kar, A., and Gutierrez-Hartmann, A. (2013) Molecular mechanisms of ETS transcription factor mediated tumorigenesis, Crit. Rev. Biochem. Mol. Biol., 48, 522-543, https://doi.org/10.3109/10409238.2013.838202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sizemore, G. M., Pitarresi, J. R., Balakrishnan, S., and Ostrowski, M. C. (2017) The ETS family of oncogenic transcription factors in solid tumours, Nat. Rev. Cancer, 17, 337-351, https://doi.org/10.1038/nrc.2017.20.

    Article  CAS  PubMed  Google Scholar 

  108. Findlay, V. J., LaRue, A. C., Turner, D. P., Watson, P. M., and Watson, D. K. (2013) Understanding the role of ETS-mediated gene regulation in complex biological processes, Adv. Cancer Res., 119, 1-61, https://doi.org/10.1016/B978-0-12-407190-2.00001-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, F., Wang, S., and Zhu, J. (2020) ETS variant transcription factor 5 and c-Myc cooperate in derepressing the human telomerase gene promoter via composite ETS/E-box motifs, J. Biol. Chem., 295, 10062-10075, https://doi.org/10.1074/jbc.RA119.012130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Viana-Pereira, M., Almeida, G. C., Stavale, J. N., Malheiro, S., Clara, C., Lobo, P., Pimentel, J., and Reis, R. M. (2017) Study of hTERT and histone 3 mutations in medulloblastoma, Pathobiology, 84, 108-113, https://doi.org/10.1159/000448922.

    Article  CAS  PubMed  Google Scholar 

  111. Stern, J. L., Theodorescu, D., Vogelstein, B., Papadopoulos, N., and Cech, T. R. (2015) Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers, Genes Dev., 29, 2219-2224, https://doi.org/10.1101/gad.269498.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Akıncılar, S. C., Khattar, E., Boon, P. L., Unal, B., Fullwood, M. J., and Tergaonkar, V. (2016) Long-range chromatin interactions drive mutant TERT promoter activation, Cancer Discov., 6, 1276-1291, https://doi.org/10.1158/2159-8290.CD-16-0177.

    Article  PubMed  Google Scholar 

  113. Mancini, A., Xavier-Magalhães, A., Woods, W. S., Nguyen, K. T., Amen, A. M., Hayes, J. L., et al. (2018) Disruption of the β1L isoform of GABP reverses glioblastoma replicative immortality in a TERT promoter mutation-dependent manner, Cancer Cell, 34, 513-528, https://doi.org/10.1016/j.ccell.2018.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Amen, A. M., Fellmann, C., Soczek, K. M., Ren, S. M., Lew, R. J., Knott, G. J., Park, J. E., McKinney, A. M., Mancini, A., Doudna, J. A., and Costello, J. F. (2021) Cancer-specific loss of TERT activation sensitizes glioblastoma to DNA damage, Proc. Natl. Acad. Sci. USA, 118, e2008772118, https://doi.org/10.1073/pnas.2008772118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Paulsson, J. O., Wang, N., Gao, J., Stenman, A., Zedenius, J., Mu, N., Lui, W. O., Larsson, C., and Juhlin, C. C. (2020) GABPA-dependent down-regulation of DICER1 in follicular thyroid tumours, Endocr. Relat. Cancer, 27, 295-308, https://doi.org/10.1530/ERC-19-0446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Guo, Y., Yuan, X., Li, K., Dai, M., Zhang, L., Wu, Y., Sun, C., Chen, Y., Cheng, G., Liu, C., Strååt, K., Kong, F., Zhao, S., Bjorkhölm, M., and Xu, D. (2020) GABPA is a master regulator of luminal identity and restrains aggressive diseases in bladder cancer, Cell Death Differ., 27, 1862-1877, https://doi.org/10.1038/s41418-019-0466-7.

    Article  CAS  PubMed  Google Scholar 

  117. Yin, L., Hubbard, A. K., and Giardina, C. (2000) NF-κB regulates transcription of the mouse telomerase catalytic subunit, J. Biol. Chem., 275, 36671-36675, https://doi.org/10.1074/jbc.M007378200.

    Article  CAS  PubMed  Google Scholar 

  118. Li, Y., Zhou, Q. L., Sun, W., Chandrasekharan, P., Cheng, H. S., Ying, Z., Lakshmanan, M., Raju, A., Tenen, D. G., Cheng, S. Y., Chuang, K. H., Li, J., Prabhakar, S., Li, M., and Tergaonkar, V. (2015) Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation, Nat. Cell Biol., 17, 1327-1338, https://doi.org/10.1038/ncb3240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Huang, D. S., Wang, Z., He, X. J., Diplas, B. H., Yang, R., Killela, P. J., Meng, Q., Ye, Z. Y., Wang, W., et al. (2015) Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation, Eur. J. Cancer, 51, 969-976, https://doi.org/10.1016/j.ejca.2015.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Heidenreich, B., Rachakonda, P. S., Hosen, I., Volz, F., Hemminki, K., Weyerbrock, A., and Kumar, R. (2015) TERT promoter mutations and telomere length in adult malignant gliomas andrecurrences, Oncotarget, 6, 10617-10633, https://doi.org/10.18632/oncotarget.3329.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Stern, J. L., Paucek, R. D., Huang, F. W., Ghandi, M., Nwumeh, R., Costello, J. C., and Cech, T. R. (2017) Allele-specific DNA methylation and its interplay with repressive histone marks at promoter-mutant TERT genes, Cell Rep., 21, 3700-3707, https://doi.org/10.1016/j.celrep.2017.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee, D. D., Komosa, M., Nunes, N. M., and Tabori, U. (2020) DNA methylation of the TERT promoter and its impact on human cancer, Curr. Opin. Genet. Dev., 60, 17-24, https://doi.org/10.1016/j.gde.2020.02.003.

    Article  CAS  PubMed  Google Scholar 

  123. Castelo-Branco, P., Choufani, S., Mack, S., Gallagher, D., Zhang, C., Lipman, T., et al. (2013) Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study, Lancet Oncol., 14, 534-542, https://doi.org/10.1016/S1470-2045(13)70110-4.

    Article  CAS  PubMed  Google Scholar 

  124. Arita, H., Narita, Y., Takami, H., Fukushima, S., Matsushita, Y., Yoshida, A., Miyakita, Y., Ohno, M., Shibui, S., and Ichimura, K. (2013) TERT promoter mutations rather than methylation are the main mechanism for TERT upregulation in adult gliomas, Acta Neuropathol., 126, 939-941, https://doi.org/10.1007/s00401-013-1203-9.

    Article  PubMed  Google Scholar 

  125. Vinagre, J., Almeida, A., Pópulo, H., Batista, R., Lyra, J., Pinto, V., Coelho, R., Celestino, R., et al. (2013) Frequency of TERT promoter mutations in human cancers, Nat. Commun., 4, 2185, https://doi.org/10.1038/ncomms3185.

    Article  CAS  PubMed  Google Scholar 

  126. Liu, R., and Xing, M. (2016) TERT promoter mutations in thyroid cancer, Endocr. Relat. Cancer, 23, R143-R155, https://doi.org/10.1530/ERC-15-0533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chung, J. H. (2020) BRAF and TERT promoter mutations: clinical application in thyroid cancer, Endocr. J., 67, 577-584, https://doi.org/10.1507/endocrj.EJ20-0063.

    Article  CAS  PubMed  Google Scholar 

  128. Panebianco, F., Nikitski, A. V., Nikiforova, M. N., and Nikiforov, Y. E. (2019) Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer, Cancer Med., 8, 5831-5839, https://doi.org/10.1002/cam4.2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zvereva, M., Pisarev, E., Hosen, I., Kisil, O., Matskeplishvili, S., Kubareva, E., Kamalov, D., Tivtikyan, A., Manel, A., Vian, E., Kamalov, A., Ecke, T., and Calvez-Kelm, F. L. (2020) Activating telomerase TERT promoter mutations and their application for the detection of bladder cancer, Int. J. Mol. Sci., 21, 6034, https://doi.org/10.3390/ijms21176034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Batista, R., Vinagre, N., Meireles, S., Vinagre, J., Prazeres, H., Leão, R., Máximo, V., and Soares, P. (2020) Biomarkers for bladder cancer diagnosis and surveillance: a comprehensive review, Diagnostics, 10, 39, https://doi.org/10.3390/diagnostics10010039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hayashi, Y., Fujita, K., Netto, G. J., and Nonomura, N. (2021) Clinical application of TERT promoter mutations in urothelial carcinoma, Front. Oncol., 11, 705440, https://doi.org/10.3389/fonc.2021.705440.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Pekmezci, M., Rice, T., Molinaro, A. M., Walsh, K. M., Decker, P. A., Hansen, H., Sicotte, H., et al. (2017) Infiltrating gliomas in adults with complex diagnostics WHO 2016: additional prognostic roles of ATRX and TERT, Acta Neuropathol., 133, 1001-1016, https://doi.org/10.1007/s00401-017-1690-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Śledzińska, P., Bebyn, M. G., Furtak, J., Kowalewski, J., and Lewandowska, M. A. (2021) Prognostic and predictive biomarkers in gliomas, Int. J. Mol. Sci., 22, 10373, https://doi.org/10.3390/ijms221910373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Guterres, A. N., and Villanueva, J. (2020) Targeting telomerase for cancer therapy, Oncogene, 39, 5811-5824, https://doi.org/10.1038/s41388-020-01405-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hasanau, T., Pisarev, E., Kisil, O., Nonoguchi, N., Le Calvez-Kelm, F., and Zvereva, M. (2022) Detection of TERT promoter mutations as a prognostic biomarker in gliomas: methodology, prospects, and advances, Biomedicines, 10, 728, https://doi.org/10.3390/biomedicines10030728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2021-1343, “Development of a bioresource collection of human nervous system tumors with molecular genetic certification for personalized treatment of patients with neurooncological diseases”).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to development of article concept and manuscript preparation. The final version of the article was approved by all authors.

Corresponding author

Correspondence to Maria E. Zvereva.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain description of studies with the involvement of humans or animal subjects performed by any of the authors.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2023, Vol. 63, pp. 41-78.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanau, T.N., Pisarev, E.P., Kisil, O.V. et al. The TERT Promoter: A Key Player in the Fight for Cancer Cell Immortality. Biochemistry Moscow 88 (Suppl 1), S21–S38 (2023). https://doi.org/10.1134/S000629792314002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792314002X

Keywords

Navigation