Skip to main content
Log in

Antibiotic Pyrrolomycin as an Efficient Mitochondrial Uncoupler

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Pyrrolomycins C (Pyr_C) and D (Pyr_D) are antibiotics produced by Actinosporangium and Streptomyces. The mechanism of their antimicrobial activity consists in depolarization of bacterial membrane, leading to the suppression of bacterial bioenergetics through the uncoupling of oxidative phosphorylation, which is based on the protonophore action of these antibiotics [Valderrama et al., Antimicrob. Agents Chemother. (2019) 63, e01450]. Here, we studied the effect of pyrrolomycins on the isolated rat liver mitochondria. Pyr_C was found to be more active than Pyr_D and uncoupled mitochondria in the submicromolar concentration range, which was observed as the mitochondrial membrane depolarization and stimulation of mitochondrial respiration. In the case of mitoplasts (isolated mitochondria with impaired outer membrane integrity), the difference in the action of Pyr_C and Pyr_D was significantly less pronounced. By contrast, in inverted submitochondrial particles (SMPs), Pyr_D was more active as an uncoupler, which caused collapse of the membrane potential even at the nanomolar concentrations. The same ratio of the protonophoric activity of Pyr_D and Pyr_C was obtained by us on liposomes loaded with the pH indicator pyranine. The protonophore activity of Pyr_D in the planar bilayer lipid membranes (BLMs) was maximal at ~pH 9, i.e., at pH values close to pKa of this compound. Pyr_D functions as a typical anionic protonophore; its activity in the BLM could be reduced by the addition of the dipole modifier phloretin. The difference between the protonophore activity of Pyr_C and Pyr_D in the mitochondria and BLMs can be attributed to a higher ability of Pyr_C to penetrate the outer mitochondrial membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

ACMA:

9-amino-6-chloro-2-methoxyacridine

BLM:

bilayer lipid membrane

CCCP:

carbonyl cyanide-m-chlorophenyl hydrazone

DNP:

2,4-dinitrophenol

Pyr_C:

Pyrrolomycin C

Pyr_D:

pyrrolomycin D

SMP:

submitochondrial particles

References

  1. Koyama, M., Kodama, Y., Tsuruoka, T., Ezaki, N., Niwa, T., et al. (1981) Structure and synthesis of pyrrolomycin A, a chlorinated nitro-pyrrole antibiotic, J. Antibiotics, 34, 1569-1576, https://doi.org/10.7164/antibiotics.34.1569.

    Article  CAS  Google Scholar 

  2. Kaneda, M., Nakamura, S., Ezaki, N., and Litaka, Y. (1981) Structure of pyrrolomycin B, a chlorinated nitro-pyrrole antibiotic, J. Antibiotics, 34, 1366-1368, https://doi.org/10.7164/antibiotics.34.1366.

    Article  CAS  Google Scholar 

  3. Cascioferro, S., Raimondi, M. V., Cusimano, M. G., Raffa, D., Maggio, B., et al. (2015) Pharmaceutical potential of synthetic and natural pyrrolomycins, Molecules, 20, 21658-21671, https://doi.org/10.3390/molecules201219797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koyama, M., Ezaki, N., Tsuruoka, T., and Inouye, S. (1983) Structural studies on pyrrolomycins C, D and E, J. Antibiotics, 36, 1483-1489, https://doi.org/10.7164/antibiotics.36.1483.

    Article  CAS  Google Scholar 

  5. Valderrama, K., Pradel, E., Firsov, A. M., Drobecq, H., Bauderlique-le Roy, H., et al. (2019) Pyrrolomycins are potent natural protonophores, Antimicrob. Agents Chemother., 63, e01450-19, https://doi.org/10.1128/AAC.01450-19.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Johnson, D., and Lardy, H. (1967) Isolation of liver or kidney mitochondria, Methods Enzymol., 10, 94-96, https://doi.org/10.1016/0076-6879(67)10018-9.

    Article  CAS  Google Scholar 

  7. Akerman, K. E., and Wikstrom, M. K. (1976) Safranine as a probe of the mitochondrial membrane potential, FEBS Lett., 68, 191-197, https://doi.org/10.1016/0014-5793(76)80434-6.

    Article  CAS  PubMed  Google Scholar 

  8. Grivennikova, V. G., Gladyshev, G. V., and Vinogradov, A. D. (2020) Deactivation of mitochondrial NADH:ubiquinone oxidoreductase (respiratory complex I): Extrinsically affecting factors, Biochim. Biophys. Acta Bioenerg., 1861, 148207, https://doi.org/10.1016/j.bbabio.2020.148207.

    Article  CAS  PubMed  Google Scholar 

  9. Deleage, G., Penin, F., Godinot, C., and Gautheron, D. C. (1983) Correlations between ATP hydrolysis, ATP synthesis, generation and utilization of delta pH in mitochondrial ATPase-ATP synthase, Biochim. Biophys. Acta, 725, 464-471, https://doi.org/10.1016/0005-2728(83)90187-1.

    Article  CAS  PubMed  Google Scholar 

  10. Denisov, S. S., Kotova, E. A., Khailova, L. S., Korshunova, G. A., and Antonenko, Y. N. (2014) Tuning the hydrophobicity overcomes unfavorable deprotonation making octylamino-substituted 7-nitrobenz-2-oxa-1,3-diazole (n-octylamino-NBD) a protonophore and uncoupler of oxidative phosphorylation in mitochondria, Bioelectrochemistry, 98, 30-38, https://doi.org/10.1016/j.bioelechem.2014.02.002.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Y., Schindler, M., and Simon, S. M. (1999) A mechanism for tamoxifen-mediated inhibition of acidification, J. Biol. Chem., 274, 18364-18373, https://doi.org/10.1074/jbc.274.26.18364.

    Article  CAS  PubMed  Google Scholar 

  12. Skulachev, V. P. (1998) Uncoupling: new approaches to an old problem of bioenergetics, Biochim. Biophys. Acta, 1363, 100-124, https://doi.org/10.1016/s0005-2728(97)00091-1.

    Article  CAS  PubMed  Google Scholar 

  13. Kotova, E. A., and Antonenko, Y. N. (2022) Fifty years of research on protonophores: mitochondrial uncoupling as a basis for therapeutic action, Acta Naturae, 14, 4-13.

    Article  CAS  Google Scholar 

  14. Starkov, A. A., Dedukhova, V. I., and Skulachev, V. P. (1994) 6-ketocholestanol abolishes the effect of the most potent uncouplers of oxidative phosphorylation in mitochondria, FEBS Lett., 355, 305-308, https://doi.org/10.1016/0014-5793(94)01211-3.

    Article  CAS  PubMed  Google Scholar 

  15. Andreyev, A. Y., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., et al. (1988) Carboxyatractylate inhibits the uncoupling effect of free fatty acids, FEBS Lett., 226, 265-269, https://doi.org/10.1016/0014-5793(88)81436-4.

    Article  PubMed  Google Scholar 

  16. Zuna, K., Jovanovic, O., Khailova, L. S., Skulj, S., Brkljako, Z., et al. (2021) Mitochondrial uncoupling proteins (UCP1-UCP3) and adenine nucleotide translocase (ANT1) enhance the protonophoric action of 2,4-dinitrophenol in mitochondria and planar bilayer membranes, Biomolecules, 11, 1178, https://doi.org/10.3390/biom11081178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Firsov, A. M., Popova, L. B., Khailova, L. S., Nazarov, P. A., Kotova, E. A., et al. (2021) Protonophoric action of BAM15 on planar bilayers, liposomes, mitochondria, bacteria and neurons, Bioelectrochemistry, 137, 107673, https://doi.org/10.1016/j.bioelechem.2020.107673.

    Article  CAS  PubMed  Google Scholar 

  18. Iaubasarova, I. R., Khailova, L. S., Firsov, A. M., Grivennikova, V. G., Kirsanov, R. S., et al. (2020) The mitochondria-targeted derivative of the classical uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone is an effective mitochondrial recoupler, PLoS One, 15, e0244499, https://doi.org/10.1371/journal.pone.0244499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khailova, L. S., Vygodina, T. V., Lomakina, G. Y., Kotova, E. A., and Antonenko, Y. N. (2020) Bicarbonate suppresses mitochondrial membrane depolarization induced by conventional uncouplers, Biochem. Biophys. Res. Commun., 530, 29-34, https://doi.org/10.1016/j.bbrc.2020.06.131.

    Article  CAS  PubMed  Google Scholar 

  20. McLaughlin, S., and Dilger, J. P. (1980) Transport of protons across membranes by weak acids, Physiol. Rev., 60, 825-863, https://doi.org/10.1152/physrev.1980.60.3.825.

    Article  CAS  PubMed  Google Scholar 

  21. O’Shaughnessy, K., and Hladky, S. B. (1983) Transient currents carried by the uncoupler, carbonyl cyanide m-chlorophenylhydrazone, Biochim. Biophys. Acta, 724, 381-387, https://doi.org/10.1016/0005-2728(83)90097-x.

    Article  PubMed  Google Scholar 

  22. Popova, L. B., Nosikova, E. S., Kotova, E. A., Tarasova, E. O., Nazarov, P. A., et al. (2018) Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials, Biochim. Biophys. Acta, 1860, 1000-1007, https://doi.org/10.1016/j.bbamem.2018.01.008.

    Article  CAS  Google Scholar 

  23. Andersen, O. S., Finkelstein, A., Katz, I., and Cass, A. (1976) Effect of phloretin on permeability of thin lipid membranes, J. Gen. Physiol., 67, 749-771, https://doi.org/10.1085/jgp.67.6.749.

    Article  CAS  PubMed  Google Scholar 

  24. Rokitskaya, T. I., Ilyasova, T. M., Severina, I. I., Antonenko, Y. N., and Skulachev, V. P. (2013) Electrogenic proton transport across lipid bilayer membranes mediated by cationic derivatives of rhodamine 19: comparison with anionic protonophores, Eur. Biophys. J., 42, 477-485, https://doi.org/10.1007/s00249-013-0898-9.

    Article  CAS  PubMed  Google Scholar 

  25. Khailova, L. S., Rokitskaya, T. I., Kovalchuk, S. I., Kotova, E. A., Sorochkina, A. I., et al. (2018) Role of mitochondrial outer membrane in the uncoupling activity of N-terminally glutamate-substituted gramicidin A, Biochim. Biophys. Acta, 1861, 281-287, https://doi.org/10.1016/j.bbamem.2018.06.013.

    Article  CAS  Google Scholar 

  26. Dickson, C. J., Hornak, V., Pearlstein, R. A., and Duca, J. S. (2017) Structure kinetic relationships of passive membrane permeation from multiscale modeling, J. Am. Chem. Soc., 139, 442-452, https://doi.org/10.1021/jacs.6b11215.

    Article  CAS  PubMed  Google Scholar 

  27. Kasianowicz, J., Benz, R., and McLaughlin, S. (1984) The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes, J. Membr. Biol., 82, 179-190, https://doi.org/10.1007/BF01868942.

    Article  CAS  PubMed  Google Scholar 

  28. Treacy, M., Miller, T., Black, B., Gard, I., Hunt, D., et al. (1994) Uncoupling activity and pesticidal properties of pyrroles, Biochem. Soc. Trans., 22, 244-247, https://doi.org/10.1042/bst0220244.

    Article  CAS  PubMed  Google Scholar 

  29. Black, B. C., Hollingworth, R. M., Ahammadsahib, K. I., Kukel, D. C., and Donovan, S. (1994) Insecticidal action and mitochondrial uncoupling activity of AC-303,630 and related halogenated pyrroles, Pestic. Biochem. Physiol., 50, 115-128, https://doi.org/10.1006/pest.1994.1064.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Ruben C. Hartkoorn (University of Lille, France) for kindly providing pyrrolomycins, I. K. Gorelova (Faculty of Bioengineering and Bioinformatics, Moscow State University) for helping with the experiments in the BLMs, and V. G. Grivennikova (Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University) for kindly providing the SMP preparations.

Funding

The study was supported by the Russian Science Foundation (project no. 21-14-00062).

Author information

Authors and Affiliations

Authors

Contributions

Y. N. Antonenko developed the concept and managed the study; A. M. Firsov, L. S. Khailova, and T. I. Rokitskaya conducted the experiments; T. I. Rokitskaya, E. A. Kotova, and Y. N. Antonenko discussed the results; E. A. Kotova and Y. N. Antonenko wrote and edited the manuscript.

Corresponding author

Correspondence to Yuri N. Antonenko.

Ethics declarations

The authors declare no conflicts of interest. The article does not contain description of studies involving humans or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firsov, A.M., Khailova, L.S., Rokitskaya, T.I. et al. Antibiotic Pyrrolomycin as an Efficient Mitochondrial Uncoupler. Biochemistry Moscow 87, 812–822 (2022). https://doi.org/10.1134/S0006297922080120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922080120

Keywords

Navigation