Skip to main content
Log in

Current Views on the Role of Stress in the Pathogenesis of Chronic Neurodegenerative Diseases

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review summarizes the results of studies on the cellular and molecular mechanisms mediating the impact of stress on the pathogenesis of neurodegenerative brain pathologies (Alzheimer’s disease, Parkinson’s disease, etc.) and presents current information on the role of stress in the hyperphosphorylation of tau protein, aggregation of beta‑amyloid, and hyperactivation of the hypothalamic-pituitary-adrenal axis involved in the hyperproduction of factors that contribute to the pathogenetic role of stress in neurodegeneration. The data on the participation of microglia in the effects of stress on the pathogenesis of neurodegenerative diseases are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure.

Similar content being viewed by others

Abbreviations

Aβ:

amyloid beta

AD:

Alzheimer’s disease

ALS:

amyotrophic lateral sclerosis

BDNF:

brain-derived neurotrophic factor

GC:

glucocorticoid

CSs:

corticosteroid

CRH:

corticotropin-releasing hormone

CRHR:

CRH receptor

HD:

Huntington’s disease

HPA axis:

hypothalamic-pituitary-adrenal axis

PD:

Parkinson’s disease

References

  1. Kolanowski, A., Boltz, M., Galik, E., Gitlin, L. N., Kales, H. C., et al. (2017) Determinants of behavioral and psychological symptoms of dementia: a scoping review of the evidence, Nurs. Outlook, 65, 515-529, https://doi.org/10.1016/j.outlook.2017.06.006.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ross, J. A., Gliebus, G., and Van Bockstaele, E. J. (2017) Stress induced neural reorganization: a conceptual framework linking depression and Alzheimer’s disease, Prog. Neuropsychopharmacol. Biol. Psychiatry, 85, 136-151, https://doi.org/10.1016/j.pnpbp.2017.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Donley, G. A. R., Lönnroos, E., Tuomainen, T. P., and Kauhanen, J. (2018) Association of childhood stress with late-life dementia and Alzheimer’s disease: the KIHD study, Eur. J. Public Health, 28, 1069-1073, https://doi.org/10.1093/eurpub/cky134.

    Article  PubMed  Google Scholar 

  4. Peña-Bautista, C., Casas-Fernández, E., Vento, M., Baquero, M., and Cháfer-Pericás, C. (2020) Stress and neurodegeneration, Clin. Chim. Acta, 503, 163-168, https://doi.org/10.1016/j.cca.2020.01.019.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y. Z., Wang, Y. X., and Jiang, C. L. (2017) Inflammation: the common pathway of stress-related diseases, Front. Hum. Neurosci., 11, 316, https://doi.org/10.3389/fnhum.2017.00316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lopes, S., Vaz-Silva, J., Pinto, V., Dalla, C., Kokras, N., et al. (2016) Tau protein is essential for stress-induced brain pathology, Proc. Natl. Acad. Sci. USA, 113, E3755-E3763, https://doi.org/10.1073/pnas.1600953113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lopes, S., Teplytska, L., Vaz-Silva, J., Dioli, C., Trindade, R., et al. (2017) Tau deletion prevents stress-induced dendritic atrophy in prefrontal cortex: role of synaptic mitochondria, Cerebr. Cortex, 27, 2580-2591.

    Google Scholar 

  8. Arendt, T., Stieler, J. T., and Holzer, M. (2016) Tau and tauopathies, Brain Res. Bull., 126, 238-292, https://doi.org/10.1016/j.brainresbull.2016.08.018.

    Article  CAS  PubMed  Google Scholar 

  9. Sierra-Fonseca, J. A., and Gosselink, K. L. (2018) Tauopathy and neurodegeneration: a role for stress, Neurobiol. Stress, 9, 105-112, https://doi.org/10.1016/j.ynstr.2018.08.009.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stephens, M. A., and Wand, G. (2012) Stress and the HPA axis: role of glucocorticoids in alcohol dependence, Alcohol. Res., 34, 468-483.

    PubMed  PubMed Central  Google Scholar 

  11. Gulyaeva, N. V. (2019) Biochemical mechanisms and translational relevance of hippocampal vulnerability to distant focal brain injury: the price of stress response, Biochemistry (Moscow), 84, 1306-1328, https://doi.org/10.1134/S0006297919110087.

    Article  CAS  Google Scholar 

  12. Sotiropoulos, I., and Sousa, N. (2016) Tau as the converging protein between chronic stress and Alzheimer’s disease synaptic pathology, Neurodegener. Dis., 16, 22-25, https://doi.org/10.1159/000440844.

    Article  CAS  PubMed  Google Scholar 

  13. Yi, J. H., Brown, C., Whitehead, G., Piers, T., Lee, Y. S., et al. (2017) Glucocorticoids activate a synapse weakening pathway culminating in tau phosphorylation in the hippocampus, Pharmacol. Res., 121, 42-51, https://doi.org/10.1016/j.phrs.2017.04.015.

    Article  CAS  PubMed  Google Scholar 

  14. Lesuis, S. L., Maurin, H., Borghgraef, P., Lucassen, P. J., Van Leuven, F., and Krugers, H. J. (2016) Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels in a mouse model of Alzheimer’s disease, Oncotarget, 7, 39118-39135, https://doi.org/10.18632/oncotarget.9776.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Justice, N. J., Huang, L., Tian, J. B., Cole, A., Pruski, M., et al. (2015) Posttraumatic stress disorder-like induction elevates beta-amyloid levels, which directly activates corticotropin-releasing factor neurons to exacerbate stress responses, J. Neurosci., 35, 2612-2623, https://doi.org/10.1523/JNEUROSCI.3333-14.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cuadrado-Tejedor, M., and García-Osta, A. (2016) Chronic mild stress assay leading to early onset and propagation of Alzheimer’s disease phenotype in mouse models, Methods Mol. Biol., 1303, 241-246, https://doi.org/10.1007/978-1-4939-2627-5_14.

    Article  PubMed  Google Scholar 

  17. Han, B., Yu, L., Geng, Y., Shen, L., Wang, H., et al. (2016) Chronic stress aggravates cognitive impairment and suppresses insulin associated signaling pathway in APP/PS1 mice, J. Alzheimer’s Dis., 53, 1539-1552, https://doi.org/10.3233/JAD-160189.

    Article  CAS  Google Scholar 

  18. Hoeijmakers, L., Ruigrok, S. R., Amelianchik, A., Ivan, D., van Dam, A. M., et al. (2017) Early-life stress lastingly alters the neuroinflammatory response to amyloid pathology in an Alzheimer’s disease mouse model, Brain Behav. Immun., 63, 160-175, https://doi.org/10.1016/j.bbi.2016.12.023.

    Article  CAS  PubMed  Google Scholar 

  19. Justice, N. J. (2018) The relationship between stress and Alzheimer’s disease, Neurobiol. Stress, 8, 127-133, https://doi.org/10.1016/j.ynstr.2018.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Han, B., Wang, J. H., Geng, Y., Shen, L., Wang, H. L., et al. (2017) Chronic stress contributes to cognitive dysfunction and hippocampal metabolic abnormalities in APP/PS1 mice, Cell. Physiol. Biochem., 41, 1766-1776, https://doi.org/10.1159/000471869.

    Article  CAS  PubMed  Google Scholar 

  21. Mietelska-Porowska, A., Wasik, U., Goras, M., Filipek, A., and Niewiadomska, G. (2014) Tau protein modifications and interactions: their role in function and dysfunction, Int. J. Mol. Sci., 15, 4671-4713, https://doi.org/10.3390/ijms15034671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matcovitch-Natan, O., Winter, D. R., Giladi, A., Vargas Aguilar, S., Spinrad, A., et al. (2016) Microglia development follows a stepwise program to regulate brain homeostasis, Science, 353, aad8670, https://doi.org/10.1126/science.aad8670.

    Article  CAS  PubMed  Google Scholar 

  23. Tian, L., Hui, C. W., Bisht, K., Tan, Y., Sharma, K., et al. (2017) Microglia under psychosocial stressors along the aging trajectory: consequences on neuronal circuits, behavior, and brain diseases, Prog. Neuropsychopharmacol., Biol. Psychiatry, 79 (Pt. A), 27-39, https://doi.org/10.1016/j.pnpbp.2017.01.007.

    Article  Google Scholar 

  24. Cartier, N., Lewis, C.-A., Zhang, R., and Rossi, F. M. V. (2014) The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol., 128, 363-380, https://doi.org/10.1007/s00401-014-1330-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Derecki, N. C., Katzmarski, N., Kipnis, J., and Meyer-Luehmann, M. (2014) Microglia as a critical player in both developmental and late-life CNS pathologies, Acta Neuropathol., 128, 333-345, https://doi.org/10.1007/s00401-014-1321-z.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sipe, G. O., Lowery, R. L., Tremblay, M.-È., Kelly, E. A., Lamantia, C. E., and Majewska, A. K. (2016) Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex, Nat. Commun., 7, 10905, https://doi.org/10.1038/ncomms10905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ransohoff, R. M., and El Khoury, J. (2015) Microglia in health and disease, Cold Spring Harb. Perspect. Biol., 8, a020560, https://doi.org/10.1101/cshperspect.a020560.

    Article  PubMed  Google Scholar 

  28. Tay, T. L., Savage, J. C., Hui, C. W., Bisht, K., and Tremblay, M.-È. (2017) Microglia across the lifespan: from origin to function in brain development, plasticity and cognition, J. Physiol., 595, 1929-1945, https://doi.org/10.1113/JP272134.

    Article  CAS  PubMed  Google Scholar 

  29. Chun, H., Marriott, I., Lee, C. J., Cho, H. (2018) Elucidating the interactive roles of glia in Alzheimer's disease using established and newly developed experimental models, Front. Neurol., 26, 797, https://doi.org/10.3389/fneur.2018.00797.

    Article  Google Scholar 

  30. Santos, L. E., Beckman, D., and Ferreira, S. T. (2016) Microglial dysfunction connects depression and Alzheimer’s disease, Brain Behav. Immun., 55, 151-165, https://doi.org/10.1016/j.bbi.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

  31. Piirainen, S., Youssef, A., Song, C., Kalueff, A. V., Landreth, G. E., et al. (2017) Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer’s disease: the emerging role for microglia? Neurosci. Biobehav. Rev., 77, 148-164, https://doi.org/10.1016/j.neubiorev.2017.01.046.

    Article  CAS  PubMed  Google Scholar 

  32. Milior, G., Lecours, C., Samson, L., Bisht, K., Poggini, S., et al. (2016) Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress, Brain Behav. Immun., 55, 114-125, https://doi.org/10.1016/j.bbi.2015.07.024.

    Article  CAS  PubMed  Google Scholar 

  33. Hellwig, S., Brioschi, S., Dieni, S., Frings, L., Masuch, A., et al. (2016) Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice, Brain Behav. Immun., 55, 126-137, https://doi.org/10.1016/j.bbi.2015.11.008.

    Article  PubMed  Google Scholar 

  34. Rimmerman, N., Schottlender, N., Reshef, R., Dan-Goor, N., and Yirmiya, R. (2017) The hippocampal transcriptomic signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency, Brain Behav. Immun., 61, 184-196, https://doi.org/10.1016/j.bbi.2016.11.023.

    Article  CAS  PubMed  Google Scholar 

  35. Winkler, Z., Kuti, D., Ferenczi, S., Gulyás, K., Polyák, Á., and Kovács, K. J. (2017) Impaired microglia fractalkine signaling affects stress reaction and coping style in mice, Behav. Brain Res., 334, 119-128, https://doi.org/10.1016/j.bbr.2017.07.023.

    Article  CAS  PubMed  Google Scholar 

  36. Dong, H., Goico, B., Martin, M., Csernansky, C. A., Bertchume, A., and Csernansky, J. G. (2004) Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress, Neuroscience, 127, 601-609, https://doi.org/10.1016/j.neuroscience.2004.05.040.

    Article  CAS  PubMed  Google Scholar 

  37. Chiba, S., Numakawa, T., Ninomiya, M., Richards, M. C., Wakabayashi, C., and Kunugi, H. (2012) Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex, Prog. Neuropsychopharmacol. Biol. Psychiatry, 39, 112-119, https://doi.org/10.1016/j.pnpbp.2012.05.018.

    Article  CAS  PubMed  Google Scholar 

  38. Roth, T. L., Zoladz, P. R., Sweatt, J. D., and Diamond, D. M. (2011) Epigenetic modification of hippocampal BDNF DNA in adult rats in an animal model of post-traumatic stress disorder, J. Psychiatr. Res., 45, 919-926, https://doi.org/10.1016/j.jpsychires.2011.01.013.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Michalski, B., and Fahnestock, M. (2003) Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease, Mol. Brain Res., 111, 148-154, https://doi.org/10.1016/s0169-328x(03)00003-2.

    Article  CAS  PubMed  Google Scholar 

  40. Peng, S., Wuu, J., Mufson, E. J., and Fahnestock, M. (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease, J. Neurochem., 93, 1412-1421, https://doi.org/10.1111/j.1471-4159.2005.03135.x.

    Article  CAS  PubMed  Google Scholar 

  41. Fonken, L. K., Frank, M. G., Gaudet, A. D., and Maier, S. F. (2018) Stress and aging act through common mechanisms to elicit neuroinflammatory priming, Brain. Behav. Immun., 73, 133-148, https://doi.org/10.1016/j.bbi.2018.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schouten, M., Bielefeld, P., Garcia-Corzo, L., Passchier, E. M. J., Gradari, S., et al. (2019) Circadian glucocorticoid oscillations preserve a population of adult hippocampal neural stem cells in the aging brain, Mol. Psychiatry, 25, 1382-1405, https://doi.org/10.1038/s41380-019-0440-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kvetnansky, R., Novak, P., Vargovic, P., Lejavova, K., Horvathova, L., Ondicova, K., et al. (2016) Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress, Stress, 19, 395-405, https://doi.org/10.1080/10253890.2016.1183119.

    Article  CAS  PubMed  Google Scholar 

  44. Huang, C.-C., Chung, C.-M., Leu, H.-B., Lin, L.-Y., Chiu, C.-C., et al. (2014) Diabetes mellitus and the risk of Alzheimer’s disease: a nationwide population-based study, PLoS One, 9, e87095, https://doi.org/10.1371/journal.pone.0087095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rojas-Gutierrez, E., Muñoz-Arenas, G., Treviño, S., Espinosa, B., Chavez, R., et al. (2017) Alzheimer’s disease and metabolic syndrome: a link from oxidative stress and inflammation to neurodegeneration, Synapse, 71, e21990, https://doi.org/10.1002/syn.21990.

    Article  CAS  PubMed  Google Scholar 

  46. Singh-Manoux, A., Dugravot, A., Fournier, A., Abell, J., Ebmeier, K., et al. (2017) Trajectories of depressive symptoms before diagnosis of dementia: a 28-year follow-up study, JAMA Psychiatry, 74, 712-718, https://doi.org/10.1001/jamapsychiatry.2017.0660.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rogalska, J. (2010) Mineralocorticoid and glucocorticoid receptors in hippocampus: their impact on neurons survival and behavioral impairment after neonatal brain injury, Vitam. Horm., 82, 391-419, https://doi.org/10.1016/S0083-6729(10)82020-5.

    Article  CAS  PubMed  Google Scholar 

  48. Yau, J. L. W., Noble, J., and Seckl, J. R. (2011) 11b-hydroxysteroid dehydrogenase type 1 deficiency prevents memory deficits with aging by switching from glucocorticoid receptor to mineralocorticoid receptor-mediated cognitive control, J. Neurosci., 31, 4188-4193, https://doi.org/10.1523/JNEUROSCI.6145-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, Y., Qin, J., Yan, J., Zhang, N., Xu, Y., et al. (2019) Differences of physical vs. psychological stress: evidences from glucocorticoid receptor expression, hippocampal subfields injury, and behavioral abnormalities, Brain Imaging Behav., 13, 1780-1788, https://doi.org/10.1007/s11682-018-9956-3.

    Article  PubMed  Google Scholar 

  50. McEwen, B. S. (1997) Possible mechanisms for atrophy of the human hippocampus, Mol. Psychiatry, 2, 255-262, https://doi.org/10.1038/sj.mp.4000254.

    Article  CAS  PubMed  Google Scholar 

  51. Sousa, N., Madeira, M. D., and Paula-Barbosa, M. M. (1998) Effects of corticosterone treatment and rehabilitation on the hippocampal formation of neonatal and adult rats. An unbiased stereological study, Brain Res., 794, 199-210, https://doi.org/10.1016/S0006-8993(98)00218-2.

    Article  CAS  PubMed  Google Scholar 

  52. Sousa, N., Lukoyanov, N. V., Madeira, M. D., Almeida, O. F. X., and Paula-Barbosa, M. M. (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement, Neuroscience, 97, 253-266, https://doi.org/10.1016/S0306-4522(00)00050-6.

    Article  CAS  PubMed  Google Scholar 

  53. Woolley, C. S., Gould, E., and McEwen, B. S. (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons, Brain Res., 531, 225-231, https://doi.org/10.1016/0006-8993(90)90778-A.

    Article  CAS  PubMed  Google Scholar 

  54. Pereda-Pérez, I., Valencia, A., Baliyan, S., Núñez, Á., Sanz-García, A., et al. (2019) Systemic administration of a fibroblast growth factor receptor 1 agonist rescues the cognitive deficit in aged socially isolated rats, Neurobiol. Aging, 78, 155-165, https://doi.org/10.1016/j.neurobiolaging.2019.02.011.

    Article  CAS  PubMed  Google Scholar 

  55. Zimmerman, M. E., Ezzati, A., Katz, M. J., Lipton, M. L., Brickman, A. M., et al. (2016) Perceived stress is differentially related to hippocampal subfield volumes among older adults, PLoS One, 11, 154530, https://doi.org/10.1371/journal.pone.0154530.

    Article  CAS  Google Scholar 

  56. Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., et al. (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease, Nat. Med., 25, 554-560, https://doi.org/10.1038/s41591-019-0375-9.

    Article  CAS  PubMed  Google Scholar 

  57. Ho, R. T. H., Fong, T. C. T., Yau, J. C. Y., Chan, W. C., Kwan, J. S. K., et al. (2020) Diurnal cortisol slope mediates the association between affect and memory retrieval in older adults with mild cognitive impairment: a pathanalytical study, Front. Aging Neurosci., 12, 35, https://doi.org/10.3389/fnagi.2020.00035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davis, K. L., Davis, B. M., Greenwald, B. S., Mohs, R. C., Mathé, A. A., et al. (1986) Cortisol and Alzheimer’s disease, I: basal studies, Am. J. Psychiatr., 143, 300-305, https://doi.org/10.1176/ajp.143.3.300.

    Article  CAS  PubMed  Google Scholar 

  59. Hartmann, A., Veldhuis, J. D., Deuschle, M., Standhardt, H., and Heuser, I. (1997) Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation, Neurobiol. Aging, 18, 285-289, https://doi.org/10.1016/s0197-4580(97)80309-0.

    Article  CAS  PubMed  Google Scholar 

  60. Lupien, S. J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., et al. (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits, Nat. Neurosci., 1, 69-73, https://doi.org/10.1038/271.

    Article  CAS  PubMed  Google Scholar 

  61. Csernansky, J. G., Dong, H., Fagan, A. M., Wang, L., Xiong, C., et al. (2006) Plasma cortisol and progression of dementia in subjects with Alzheimer type dementia, Am. J. Psychiatry, 163, 2164-2169, https://doi.org/10.1176/ajp.2006.163.12.2164.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lebedeva, A. K., Westman, E., Borza, T., Beyer, M. K., Engedal, K., et al. (2017) MRI-Based classification models in prediction of mild cognitive impairment and dementia in late-life depression, Front. Aging Neurosci., 9, 13, https://doi.org/10.3389/fnagi.2017.00013.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mah, L., Binns, M. A., and Steffens, D. C. (2015) Anxiety symptoms in amnestic mild cognitive impairment are associated with medial temporal atrophy and predict conversion to Alzheimer’s disease, Am. J. Geriatr. Psychiatry, 23, 466-476, https://doi.org/10.1016/j.jagp.2014.10.005.

    Article  PubMed  Google Scholar 

  64. Starkstein, S., Dragovic, M., Brockman, S., Wilson, M., Bruno, V., and Merello, M. (2015) The impact of emotional distress on motor blocks and festination in Parkinson’s disease, J. Neuropsychiatry Clin. Neurosci., 27, 121-126, https://doi.org/10.1176/appi.neuropsych.13030053.

    Article  PubMed  Google Scholar 

  65. Kim, S. R., Kim, J. Y., Kim, H. K., Lim, K. E., Kim, M. S., and Chung, S. J. (2017) Association among type D personality, non-motor symptoms, and quality of life in Parkinson’s disease: a cross-sectional study, Geriatr. Nurs., 38, 431-436, https://doi.org/10.1016/j.gerinurse.2017.02.006.

    Article  PubMed  Google Scholar 

  66. Ibrahimagic, O. C., Jakubovic, A. C., Smajlovic, D., Dostovic, Z., Kunic, S., Iljazovic, A. (2016) Psychological stress and changes of hypothalamic-pituitary-adrenal axis in patients with “De Novo” Parkinson’s disease, Med. Arch., 70, 445-448, https://doi.org/10.5455/medarh.016.70.445-448.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chan, Y. E., Bai, Y. M., Hsu, J. W., Huang, K. L., Su, T. P., et al. (2017) Post-traumatic stress disorder and risk of Parkinson’s disease: a nationwide longitudinal study, Am. J. Geriatr. Psychiatry, 25, 917-923, https://doi.org/10.1016/j.jagp.2017.03.012.

    Article  PubMed  Google Scholar 

  68. Blakemore, R. L., MacAskill’, M. R., Shoorangiz, R., and Anderson, T. J. (2018) Stress-evoking emotional stimuli exaggerate deficits in motor function in Parkinson’s disease, Neuropsychologia, 112, 66-76, https://doi.org/10.1016/j.neuropsychologia.2018.03.006.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, Z., Chu, S. F., Wang, S. S., Jiang, Y. N., Gao, Y., et al. (2018) RTP801 is a critical factor in the neurodegeneration process of A53T α-synuclein in a mouse model of Parkinson’s disease under chronic restraint stress, Br. J. Pharmacol., 175, 590-605, https://doi.org/10.1111/bph.14091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu, Q., Yang, X., Zhang, Y., Zhang, L., and Feng, L. (2016) Chronic mild stress accelerates the progression of Parkinson’s disease in A53T α-synuclein transgenic mice, Exp. Neurol., 285, Pt A, 61-71, https://doi.org/10.1016/j.expneurol.2016.09.004.

    Article  CAS  Google Scholar 

  71. Dallé, E., and Mabandla, M. V. (2018) Early life stress, depression and Parkinson’s disease: a new approach, Mol. Brain, 11, 18, https://doi.org/10.1186/s13041-018-0356-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grigoruţă, M., Martínez-Martínez, A., Dagda, R. Y., and Dagda, R. K. (2020) Psychological stress phenocopies brain mitochondrial dysfunction and motor deficits as observed in a parkinsonian rat model, Mol. Neurobiol., 57, 1781-1798, https://doi.org/10.1007/s12035-019-01838-9.

    Article  CAS  PubMed  Google Scholar 

  73. Kong, H., Yang, L., He, C., Zhou, J. W., Li, W. Z., et al. (2019) Chronic unpredictable mild stress accelerates lipopolysaccharide-induced microglia activation and damage of dopaminergic neurons in rats, Pharmacol. Biochem. Behav., 179, 142-149, https://doi.org/10.1016/j.pbb.2019.01.004.

    Article  CAS  PubMed  Google Scholar 

  74. Mariathasan, S., Newton, K., Monack, D. M., Vucic, D., French, D. M., et al. (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf, Nature, 430, 213-218, https://doi.org/10.1038/nature02664.

    Article  CAS  PubMed  Google Scholar 

  75. De Pablos, R. M., Herrera, A. J., Espinosa-Oliva, A. M., Sarmiento, M., Muñoz, M. F., et al. (2014) Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation, J. Neuroinflammation, 11, 34, https://doi.org/10.1186/1742-2094-11-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sugama, S., Sekiyama, K., Kodama, T., Takamatsu, Y., Takenouchi, T., et al. (2016) Chronic restraint stress triggers dopaminergic and noradrenergic neurodegeneration: possible role of chronic stress in the onset of Parkinson’s disease, Brain Behav. Immun., 51, 39-46, https://doi.org/10.1016/j.bbi.2015.08.015.

    Article  CAS  PubMed  Google Scholar 

  77. Dufour, B. D., and McBride, J. L. (2016) Corticosterone dysregulation exacerbates disease progression in the R6/2 transgenic mouse model of Huntington’s disease, Exp. Neurol., 283, Pt. A, 308-317, https://doi.org/10.1016/j.expneurol.2016.06.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mo, C., Renoir, T., and Hannan, A. J. (2014) Effects of chronic stress on the onset and progression of Huntington’s disease in transgenic mice, Neurobiol. Dis., 71, 81-94, https://doi.org/10.1016/j.nbd.2014.07.008.

    Article  CAS  PubMed  Google Scholar 

  79. Scarpa, J. R., Jiang, P., Losic, B., Readhead, B., Gao, V. D., et al. (2016) Systems genetic analyses highlight a TGFβ-FOXO3 dependent striatal astrocyte network conserved across species and associated with stress, sleep, and Huntington’s disease, PLoS Genet., 12, e1006137, https://doi.org/10.1371/journal.pgen.1006137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Longinetti, E., Mariosa, D., Larsson, H., Almqvist, C., Lichtenstein, P., et al. (2017) Physical and cognitive fitness in young adulthood and risk of amyotrophic lateral sclerosis at an early age, Eur. J. Neurol., 24, 137-142, https://doi.org/10.1111/ene.13165.

    Article  CAS  PubMed  Google Scholar 

  81. Parkin Kullmann, J. A., Hayes, S., and Pamphlett, R. (2018) Is psychological stress a predisposing factor for amyotrophic lateral sclerosis (ALS)? An online international case-control study of premorbid life events, occupational stress, resilience and anxiety, PLoS One, 13, e0204424, https://doi.org/10.1371/journal.pone.0204424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rabkin, J., Goetz, R., Murphy, J. M., Factor-Litvak, P., Mitsumoto, H., and ALS COSMOS Study Group (2016) Cognitive impairment, behavioral impairment, depression, and wish to die in an ALS cohort, Neurology, 87, 1320-1328, https://doi.org/10.1212/WNL.0000000000003035.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid G. Khaspekov.

Ethics declarations

The author declares no conflict of interests. No description of studies with human subjects or animals performed by the author is provided in the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaspekov, L.G. Current Views on the Role of Stress in the Pathogenesis of Chronic Neurodegenerative Diseases. Biochemistry Moscow 86, 737–745 (2021). https://doi.org/10.1134/S0006297921060110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921060110

Keywords

Navigation