Skip to main content
Log in

Algorithm for Extracting Weak Bands Kinetics from the Transient Absorption Spectra of the Rhodobacter sphaeroides Reaction Center

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

An algorithm to extract kinetics of the ion radical bands from the strong absorption background in the transient absorption spectra of the Rhodobacter sphaeroides reaction centers upon femtosecond excitation of the primary electron donor is suggested. The rising kinetics of the transient absorption band at 1020 nm and the bleaching kinetics of the 545-nm band constructed using the proposed method are adequately fitted by the kinetic equations for sequential electron transfer from the excited primary donor to the BA (monomeric bacteriochlorophyll) molecule, and then to the HA (bacteriopheophytin serving as an electron acceptor) molecule with the rate constants of 3.5 ± 0.2 and 0.8 ± 0.1 ps, respectively. The kinetics of the bacteriochlorophyll absorption band at 600 nm shows both the ultrafast bleaching of the P870 dimer and slower bleaching of the BA monomer due to its transition to the anion radical. The plotted kinetics of the ion radical bands is in agreement with the concentration profiles of the charge-separated states produced by the global target analysis of experimental data using the model of sequential electron transfer in the reaction centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΔA:

absorbance changes

ΔGauss:

the fraction of Gauss absorption band changes

BA :

monomeric BChl in the active chain of cofactors

BChl:

bacteriochlorophyll

HA :

bacteriopheophytin serving as an electron acceptor

P:

primary electron donor

QA :

primary quinone acceptor

QB :

secondary quinone acceptor

RC:

reaction center

References

  1. Kirmaier, C., and Holten, D. (1987) Primary photochemistry of reaction centers from the photosynthetic purple bacteria, Photosynth. Res., 13, 225–260, doi: https://doi.org/10.1007/BF00029401.

    Article  CAS  PubMed  Google Scholar 

  2. Woodbury, N. W., and Allen, J. P. (2004) in Anoxygenic Photosynthetic Bacteria (Blankenship, R. E., Madigan, M. T., and Bauer, C. E., eds.) Kluwer Academic Publishers, New York, pp. 527–557, doi: https://doi.org/10.1007/0-306-47954-0-24.

  3. Holzapfel, W., Finkele, U., Kaiser, W., Oesterhelt, D., Scheer, H., Stilz, H. U., and Zinth, W. (1989) Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center, Chem. Phys. Lett., 160, 1–7, doi: https://doi.org/10.1016/0009-2614(89)87543-8.

    Article  CAS  Google Scholar 

  4. Arlt, T., Schmidt, S., Kaiser, W., Lauterwasser, C., Meyer, M., Scheer, H., and Zinth, W. (1993) The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis, Proc. Natl. Acad. Sci. USA, 90, 11757–11761, doi: https://doi.org/10.1073/pnas.90.24.11757.

    Article  CAS  PubMed  Google Scholar 

  5. Kennis, J. T., Shkuropatov, A. Y., van Stokkum, I. H. M., Gast, P., Hoff, A. J., Shuvalov, V. A., and Aartsma, T. J. (1997) Formation of a long-lived P+BA state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at low temperature, Biochemistry, 36, 16231–16238, doi: https://doi.org/10.1021/bi9712605.

    Article  CAS  PubMed  Google Scholar 

  6. Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2000) Nuclear wavepacket motion producing a reversible charge separation in bacterial reaction centers, FEBS Lett., 466, 209–212, doi: https://doi.org/10.1016/S0014-5793(00)01081-4.

    Article  CAS  PubMed  Google Scholar 

  7. Van Stokkum, I., Larsen, D., and van Grondelle, R. (2004) Global and target analysis of time-resolved spectra, Biochim. Biophys. Acta, 1657, 82–104, doi: https://doi.org/10.1016/j.bbabio.2004.04.011.

    Article  CAS  PubMed  Google Scholar 

  8. Holzwarth, A. R., and Muller, M. G. (1996) Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides: a femtosecond transient absorption study, Biochemistry, 35, 11820–11831, doi: https://doi.org/10.1021/bi9607012.

    Article  CAS  PubMed  Google Scholar 

  9. Kakitani, Y., Hou, A., Miyasako, Y., Koyama, Y., and Nagae, H. (2010) Rates of the initial two steps of electron transfer in reaction centers from Rhodobacter sphaeroides as determined by singular-value decomposition followed by global fitting, Chem. Phys. Lett., 492, 142–149, doi: https://doi.org/10.1016/j.cplett.2010.03.071.

    Article  CAS  Google Scholar 

  10. Zhu, J., van Stokkum, I. H. M., Paparelli, L., Jones, M. R., and Groot, M. L. (2013) Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides, Biophys. J., 104, 2493–2502, doi: https://doi.org/10.1016/j.bpj.2013.04.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dominguez, P., Himmelstoss, M., Michelmann, J., Lehner, F., Gardiner, A. T., Cogdell, R. J., and Zinth, W. (2014) Primary reactions in photosynthetic reaction centers of Rhodobacter sphaeroides — time constants of the initial electron transfer, Chem. Phys. Lett., 601, 103–109, doi: https://doi.org/10.1016/j.cplett.2014.03.085.

    Article  CAS  Google Scholar 

  12. Carter, B., Boxer, S. B., Holten, D., and Kirmaier, C. (2012) Photochemistry of a bacterial photosynthetic reaction center missing the initial bacteriochlorophyll electron acceptor, J. Phys. Chem. B, 116, 9971–9982, doi: https://doi.org/10.1021/jp305276m.

    Article  CAS  PubMed  Google Scholar 

  13. Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2002) Nuclear wavepacket motion between P* and P+BA potential surfaces with subsequent electron transfer to HA in bacterial reaction centers. 1. Room temperature, Biochemistry, 41, 2667–2674, doi: https://doi.org/10.1021/bi0101244.

    Article  CAS  PubMed  Google Scholar 

  14. Shuvalov, V. A., Shkuropatov, A. Ya., Kulakova, S. M., Ismailov, M. A., and Shkuropatova, V. A. (1986) Photoreactions of bacteriopheophytins and bacteriochlorophylls in reaction centers of Rhodopseudomonas sphaeroides and Chloroflexus aurantiacus, Biochim. Biophys. Acta, 849, 337–346, doi: https://doi.org/10.1016/0005-2728(86)90145-3.

    Article  CAS  Google Scholar 

  15. Khatypov, R. A., Khristin, A. M., Fufina, T. Yu., and Shuvalov, V. A. (2017) An alternative pathway of lightinduced transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides, Biochemistry (Moscow), 82, 692–697, doi: https://doi.org/10.1134/S0006297917060050.

    Article  CAS  Google Scholar 

  16. Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M., and van Stokkum, I. H. M. (2012) Glotaran: a Javabased graphical user interface for the R package TIMP, J. Stat. Soft., 49, 1–22, doi: https://doi.org/10.18637/jss.v049.i03.

    Article  Google Scholar 

  17. Sporlein, S., Zinth, W., and Wachtveilt, J. (1998) Vibrational coherence in photosynthetic reaction centers observed in the bacteriochlorophyll anion band, J. Phys. Chem. B, 102, 7492–7496, doi: https://doi.org/10.1021/jp9817473.

    Article  Google Scholar 

  18. Heller, B., Holten, D., and Kirmaier, C. (1996) Effects of Asp residues near the L-side pigments in bacterial reaction centers, Biochemistry, 35, 15418–15427, doi: https://doi.org/10.1021/bi961362f.

    Article  CAS  PubMed  Google Scholar 

  19. Shuvalov, V. A., and Duysens, L. N. M. (1986) Primary electron transfer reactions in modified reaction centers from Rhodopseudomonas sphaeroides, Proc. Natl. Acad. Sci. USA, 83, 1690–1694, doi: https://doi.org/10.1073/pnas.83.6.1690.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Ya. Shkuropatov and A. A. Zabelin for their help during the study and discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Khatypov.

Additional information

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 6, pp. 827-835.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM19-039, May 6, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatypov, R.A., Khristin, A.M., Vasilyeva, L.G. et al. Algorithm for Extracting Weak Bands Kinetics from the Transient Absorption Spectra of the Rhodobacter sphaeroides Reaction Center. Biochemistry Moscow 84, 644–651 (2019). https://doi.org/10.1134/S0006297919060075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919060075

Keywords

Navigation