Skip to main content
Log in

Primary photochemistry of reaction centers from the photosynthetic purple bacteria

  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic organisms transform the energy of sunlight into chemical potential in a specialized membrane-bound pigment-protein complex called the reaction center. Following light activation, the reaction center produces a charge-separated state consisting of an oxidized electron donor molecule and a reduced electron acceptor molecule. This primary photochemical process, which occurs via a series of rapid electron transfer steps, is complete within a nanosecond of photon absorption. Recent structural data on reaction centers of photosynthetic bacteria, combined with results from a large variety of photochemical measurements have expanded our understanding of how efficient charge separation occurs in the reaction center, and have changed many of the outstanding questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BChl:

bacteriochlorophyll

P:

a dimer of BChl molecules

BPh:

bacteriopheophytin

QA and QB :

quinone molecules

L, M and H:

light, medium and heavy polypeptides of the reaction center

References

  1. Agalidis I, Nuijs AM and Reiss-Husson F (1987) Characterization of an LM unit purified by affinity chromatography from Rps. sphaeroides reaction center and interactions with the H subunit. Biochim Biophys Acta 890: 242–250

    Google Scholar 

  2. Akhmanov SA, Borisov AY, Danielius RV, Gadonas RA, Kozlowske VS, Piskarskas AS, Razjivin AP and Shuvalov VA (1980) One- and two-photon picosecond processes of electron transfer among the porphyrin molecules in bacterial reaction centers. FEBS Lett 114: 149–152

    Google Scholar 

  3. Allen JP and Feher G (1984) Crystallization of reaction center from Rhodopseudomonas sphaeroides: Preliminary characterization. Proc Natl Acad Sci USA 81: 4795–4799

    Google Scholar 

  4. Allen JP, Feher G, Yeates TO, Rees DC, Eisenberg DS, Deisenhofer J, Michel H, and Huber R (1986) Preliminary electron density mapping of the reaction center from R. sphaeroides using the molecular replacement method. Biophys J 49: 583a

  5. Allen JP, Feher G, Yeates TO, Rees DC, Deisenhofer J, Michel H and Huber R (1986) Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction. Proc Natl Acad Sci USA 83: 8589–8593

    Google Scholar 

  6. Arata H and Parson WW (1981) Delayed fluorescence from Rhodopseudomonas sphaeroides reaction centers: enthalpy and free energy changes accompanying electron transfer from P870 to quinones. Biochim Biophys Acta 638: 201–209

    Google Scholar 

  7. Becker M, Middendorf D, Woodbury NW, Parson WW and Blankenship RE (1986) Picosecond electron transfer and stimulated emission in reaction centers of Rhodobacter sphaeroides and Chloroflexus aurantiacus. In: Fleming GR and Siegman AE (eds) Ultrafast Phenomena V, pp 374–78. Berlin: Springer-Verlag

    Google Scholar 

  8. Bixon M and Jortner J (1986) Coupling of protein modes to electron transfer in bacterial photosynthesis. J Phys Chem 90: 3795–3800.

    Google Scholar 

  9. Blankenship RE and Parson WW (1979) The involvement of iron and ubiquinone in electron transfer reactions mediated by reaction centers from photosynthetic bacteria. Biochim Biophys Acta 545: 429–444

    Google Scholar 

  10. Blankenship RE and Parson WW (1979) Kinetics and thermodynamics of electron transfer in bacterial reaction centers. In: Barber J (ed.) Photosynthesis in Relation to Model Systems, pp 71–114. Amsterdam: Elsevier

    Google Scholar 

  11. Blankenship RE, Feick R, Bruce BD, Kirmaier C, Holten D and Fuller RC (1983) Primary photochemistry in the facultative green photosynthetic bacterium Chloroflexus aurantiacus. J Cell Biochem 22: 251–261

    Google Scholar 

  12. Blankenship RE (1985) Electron transport in green photosynthetic bacteria. Photosynth Res 6: 317–333

    Google Scholar 

  13. Bocian DF, Boldt NJ, Chadwick BW and Frank HA (1987) Near-infrared-excitation resonance Raman spectra of bacterial photosynthetic reaction centers: implications for path-specific electron transfer. FEBS Lett 214: 92–95

    Google Scholar 

  14. Borisov AYu, Danielius RV, Kudzmauskas SP, Piskarskas AS, Razjivin AP, Sirutkaitis VA and Valkunas LL (1983) Evidence against the stage of electron loicalization on monomeric bacteriochlorophyll (P-800) under charge separation in reaction centers. Photobiochem Photobiophys 6: 33–38

    Google Scholar 

  15. Boxer SG, Chidsey CED and Roelofs (1983) Magnetic field effects on reaction yields in the solid state: An example from photosynthetic reaction centers. Ann Rev Phys Chem 34: 389–417

    Google Scholar 

  16. Boxer SG, Lockhart DJ and Middendorf TR (1986) Photochemical hole-burning in photosynthetic reaction centers. Chem Phys Lett 123: 476–482

    Google Scholar 

  17. Boxer SG, Middendorf TR and Lockhart DJ (1986) Reversible photochemical holeburning in Rhodopseudomonas viridis reaction centers. FEBS Lett 200: 237–241

    Google Scholar 

  18. Boxer SG, Middendorf TR, Lockhart DJ and Gottfried DS (1987) Photochemical and non-photochemical holeburning studies of energy and electron transfer in photosynthetic reaction centers and model systems. In: Biggins J (ed.) Progress in Photosynthesis Research, Vol. 1, pp 17–24. The Hague: Martinus Nijhoff

    Google Scholar 

  19. Breton J and Vermeglio (1982) Orientation of photosynthetic pigments in vivo. In: Govindjee (ed.) Photosynthesis: Energy Conversion by Plants and Bacteria, pp 153–194. New York: Academic Press

    Google Scholar 

  20. Breton J (1985) Orientation of the chromophores in the reaction center of Rhodopseudomonas viridis. Comparison of low-temperature linear dichroism spectra with a model derived from X-ray crystallography. Biochim Biophys Acta 810: 235–245

    Google Scholar 

  21. Breton J, Martin J-L, Migus A, Antonetti A and Orszag A (1986) Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis. Proc Natl Acad Sci USA 83: 5121–5125

    Google Scholar 

  22. Breton J, Martin J-L, Petrich J, Migus A and Antonetti A (1986) The absence of a spectroscopically resolved intermediate state P+ B- in bacterial photosynthesis. FEBS Lett 209: 37–43

    Google Scholar 

  23. Breton J, Martin J-L, Migus A, Antonetti A and Orszag A (1986) Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. In: Fleming GR and Siegman AE (eds) Ultrafast Phenomena V, pp 393–397. Berlin: Springer-Verlag

    Google Scholar 

  24. Bruce BD, Fuller RC and Blankenship RE (1982) Primary photochemistry in the facultative aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Proc Natl Acad Sci USA 79: 6532–6536

    Google Scholar 

  25. Chang C-H, Schiffer M, Tiede D, Smith U, and Norris J (1985) Characterization of bacterial photosynthetic reaction center crystals from Rhodopseudomonas sphaeroides R-26 by X-ray diffraction. J Mol Biol 186: 201–203

    Google Scholar 

  26. Chang C-H, Tiede D, Tang J, Smith U, Norris J and Schiffer M (1986) Structure of Rhodopseudomonas sphaeroides R-26 reaction center. FEBS Lett 205: 82–86

    Google Scholar 

  27. Chidsey CED, Takiff L, Goldstein RA and Boxer SG (1985) Effect of magnetic fields on the triplet state lifetime in photosynthetic reaction centers: Evidence for thermal repopulation of the initial radical pair. Proc Natl Acad Sci USA 82: 6850–6854

    Google Scholar 

  28. Churg AK, Weiss RM, Warshel A and Takano T (1983) On the action of cytochrome c: Correlating geometry changes upon oxidation with activation energies of electron transfer. J Phys Chem 87: 1683–1694

    Google Scholar 

  29. Clayton RK and Yamamoto T (1976) Photochemical quantum efficiency and absorption spectra of reaction centers from Rhodopseudomonas sphaeroides at low temperature. Photochem Photobiol 24: 67–70

    Google Scholar 

  30. Connolly JS, Samuel EB and Janzen AF (1982) Effects of solvent on the fluorescence properties of bacteriochlorophyll a. Photochem Photobiol 36: 565–574

    Google Scholar 

  31. Crofts AR and Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726: 149–185

    Google Scholar 

  32. Davis MS, Forman A, Hanson LK, Thornber JP and Fajer J (1979) Anion and cation radicals of bacteriochlorophyll and bacteriopheophytin b. Their role in the primary charge separation of Rhodopseudomonas viridis. J Phys Chem 83: 3325–3332

    Google Scholar 

  33. de Leeuv D, Malley M, Butterman G, Okamura MY and Feher G (1982) The Stark effect in reaction centers from R. sphaeroides. Biophys J 37: 111a

  34. den Blanken JH and Hoff AJ (1982) High-resolution optical absorption-difference spectra of the triplet state of the primary donor in isolated reaction centers of the photosynthetic bacteria Rhodopseudomonas sphaeroides R-26 and Rhodopseudomonas viridis measured with optically detected magnetic resonance at 1.2 K. Biochim Biophys Acta 681: 365–374

    Google Scholar 

  35. Debus RJ, Feher G and Okamura MY (1986) Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: Characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. Biochem 25: 2276–2287

    Google Scholar 

  36. Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Google Scholar 

  37. Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 618–624

    Google Scholar 

  38. Deprez J, Trissl HW and Breton J (1986) Excitation trapping and primary charge stabilization in Rhodopseudomonas viridis cells, measured electrically with picosecond resolution. Proc Natl Acad Sci USA 83: 1699–1703

    Google Scholar 

  39. Devault D (1986) Vibronic coupling of electron transfer and the structure of the R. viridis reaction center. Photosyn Res 10: 125–137

    Google Scholar 

  40. Ditson SL, Davis RC and Pearlstein RM (1984) Relative enrichment of P-870 in photosynthetic reaction centers treated with sodium borohydride. Biochim Biophys Acta 766: 623–629

    Google Scholar 

  41. Dutton PL, Kaufmann KJ, Chance B and Rentzepis PM (1975) Picosecond kinetics of the 1250 nm band of the Rps. sphaeroides reaction center: The nature of the primary photochemical intermediary state. FEBS Lett 60: 275–280

    Google Scholar 

  42. Efrima S and Bixon M (1974) On the role of vibrational excitation in electron transfer reactions with large negative free energies. Chem Phys Lett 25: 34–37

    Google Scholar 

  43. Fajer J, Brune DC, Davis MS, Forman A and Spaulding LD (1975) Primary charge separation in bacterial photosynthesis: Oxidized chlorophylls and reduced pheophytin Proc Natl Acad Sci USA 72: 4956–4960

    Google Scholar 

  44. Fajer J, Davis MS, Brune DC, Spaulding LD, Borg DC and Forman A (1977) Chlorophyll radicals and primary events. Brookhaven Symp Biol 28: 74–103

    Google Scholar 

  45. Fajer J, Davis MS, Brune DC, Forman A and Thornber JP (1978) Optical and paramagnetic identification of a primary electron acceptor in bacterial photosynthesis. J Am Chem Soc 100: 1918–1920

    Google Scholar 

  46. Feher G, Hoff AJ, Isaacson RA and Ackerson LCF (1975) ENDOR experiments on chlorophyll and bacteriochlorophyll in vitro and in the photosynthetic unit. Ann N Y Acad Sci 244: 239–259

    Google Scholar 

  47. Felton RH (1978) Primary redox reactions of metalloporphyrins. In: Dolphin D (ed.) The Porphyrins, pp 53–125. New York: Academic Press

    Google Scholar 

  48. Florin S and Tiede DM (1987) Photochemical reduction of either of the two bacteriopheophytins in bacterial photosynthetic reaction centers. In: Biggins J (ed.) Progress in Photosynthesis Research, Vol. 1, pp 205–208. The Hague: Martinus Nijhoff

    Google Scholar 

  49. Freiberg AM, Godik VI, Kharchenko SG, Timpmann KE, Borisov A Yu and Rebane KK (1985) Picosecond fluorescence of reaction centers from Rhodospirillum rubrum. FEBS Lett 189: 341–344

    Google Scholar 

  50. Friesner R and Wertheimer B (1982) Model for primary charge separation in reaction centers of photosynthetic bacteria. Proc Natl Acad Sci USA 79: 2138–2142

    Google Scholar 

  51. Gast Pand Norris JR (1984) EPR detected triplet formation in a single crystal of reaction center protein from the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26. FEBS Lett 177: 277–280

    Google Scholar 

  52. Gouterman M and Holten D (1977) Electron transfer from photoexcited singlet and triplet bacteriopheophytin-II. Theoretical. Photochem Photobiol 25: 85–92

    Google Scholar 

  53. Gunner MR, Braun BS, Bruce JM and Dutton PL (1985) Characterization of the QA binding site of the reaction center of Rps. sphaeroides. In: Michel-Beyerle ME (ed.) Antennas and Reaction Centers of Photosynthetic Bacteria, pp. 298–305. Berlin: Springer-Verlag

    Google Scholar 

  54. Gunner MR, Robertson DE and Dutton PL (1986) Kinetic studies on the reaction center protein from Rhodopseudomonas sphaeroides: The temperature and free energy dependence of electron transfer between various quinones in the QA site and the oxidized bacteriochlorophyll dimer. J Phys Chem 90: 3783–3795

    Google Scholar 

  55. Hale MB, Blankenship RE, Fuller RC (1983) Menaquinone is the sole quinone in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 723: 376–382

    Google Scholar 

  56. Hayes JM and Small GJ (1986) Photochemical hole burning and strong electron-phonon coupling: Primary donor states of reaction centers of photosynthetic bacteria. J Phys Chem 90: 4928–4931

    Google Scholar 

  57. Hoff AJ (1984) Electron spin polarization of photosynthetic reactants. Quart Rev Biophys 17: 153–282

    Google Scholar 

  58. Hoff AJ, Lous EJ, Moehl KW and Dijkman JA (1985) Magneto-optical absorbance difference spectroscopy. A new tool for the study of radical recombination reactions. An application to bacterial photosynthesis. Chem Phys Lett 114: 39–43

    Google Scholar 

  59. Hoff AJ, den Blanken HJ, Vasmel H and Meiburg RF (1985) Linear-dichroic tripletminus-singlet absorbance difference spectra of reaction centers of the photosynthetic bacteria Chromatium vinosum, Rhodopseudomonas sphaeroides R-26 and Rhodospirillum rubrum Sl. Biochim Biophys Acta 806: 389–397

    Google Scholar 

  60. Hoff AJ (1986) Optically detected magnetic resonance (ODMR) of triplet states in vivo. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology: Photosynthesis III, pp 400–421. Berlin: Springer-Verlag

    Google Scholar 

  61. Holten D, Windsor MW, Parson WW and Thornber JP (1978) Primary photochemical processes in isolated reaction centers of Rhodopseudomonas viridis. Biochim Biophys Acta 501: 112–126

    Google Scholar 

  62. Holten D, Hoganson C, Windsor MW, Schenck CG, Parson WW, Migus A, Fork RL and Shank CV (1980) Subpicosecond and picosecond studies of electron transfer inter-mediates in Rhodopseudomonas sphaeroides reaction centers. Biochim Biophys Acta 592: 461–477

    Google Scholar 

  63. Holten D, Kirmaier C and Levine L (1987) Spectroscopic and primary photochemical properties of modified Rhodopseudomonas sphaeroides reaction centers. In: Biggins J (ed.) Progress in Photosynthetic Research, Vol. 1, pp 169–175. The Hague: Martinus Nijhoff

    Google Scholar 

  64. Horber JKH, Gobel W, Ogrodnik A, Michel-Beyerle ME and Cogdell RJ (1986) Time-resolved measurements of fluorescence from reaction centers of Rhodopseudomonas viridis and the effect of menaquinone reduction. FEBS Lett 198: 268–272

    Google Scholar 

  65. Horber JKH, Gobel W, Ogrodnik A, Michel-Beyerle ME and Cogdell RJ (1986) Time-resolved measurements of fluorescence from reaction centers of Rhodopseudomonas sphaeroides R26.1. FEBS Lett 198: 273–278

    Google Scholar 

  66. Imhoff JF, Truper HG and Pfennig N (1984) Rearrangement of the species and the genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Bact 34: 340–343

    Google Scholar 

  67. Jortner J (1976) Temperature dependent activation energy for electron transfer between biological molecules. J Chem Phys 64: 4860–4867

    Google Scholar 

  68. Jortner J (1980) Dynamics of the primary events in bacterial photosynthesis. J Am Chem Soc 102: 6676–6686

    Google Scholar 

  69. Kakitani T and Kakitani H (1981) A possible new mechanism of temperature dependence of electron transfer in photosynthesis systems. Biochim Biophys Acta 635: 498–514

    Google Scholar 

  70. Kaufmann KJ, Dutton PL, Netzel TL, Leigh JS and Rentzepis PM (1975) Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation. Science 188: 1301–1304

    Google Scholar 

  71. Kaufmann KJ, Petty KM, Dutton PL and Rentzepis PM (1976) Picosecond kinetics in reaction centers of Rps. sphaeroides and the effects of ubiquinone extraction and reconstitution. Biochem Biophys Res Commun 70: 839–845

    Google Scholar 

  72. Kirmaier C, Holten D, Feick R and Blankenship RE (1983) Picosecond measurements of the primary photochemical events in reaction centers isolated from the facultative green photosynthetic bacterium Chloroflexus aurantiacus: Comparison with the purple bacterium Rhodopseudomonas sphaeroides. FEBS Lett 158: 73–78

    Google Scholar 

  73. Kirmaier C, Holten D and Parson WW (1983) Picosecond photodichroism (photoselection) measurements on transient states in reaction centers from Rhodopseudomonas sphaeroides, Rhodospirillum rubrum and Rhodopseudomonas viridis. Biochim Biophys Acta 725: 190–202

    Google Scholar 

  74. Kirmaier C, Holten D, Mancino LJ and Blankenship RE (1984) Picosecond photodichroism studies on reaction centers from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 765: 138–146

    Google Scholar 

  75. Kirmaier C, Holten D and Parson WW (1985) The question of the intermediate state P+ BChl- in bacterial photosynthesis. FEBS Lett 185: 76–81

    Google Scholar 

  76. Kirmaier C, Holten D and Parson WW (1985) Temperature and detection-wavelength dependence of the picosecond electron transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge separation process. Biochim Biophys Acta 810: 33–48

    Google Scholar 

  77. Kirmaier C, Holten D and Parson WW (1985) Picosecond photodichroism studies of the transient states in Rhodopseudomonas sphaeroides reaction centers at 5 K. Effects of electron transfer on the six bacteriochlorin pigments. Biochim Biophys Acta 810: 49–61

    Google Scholar 

  78. Kirmaier C, Holten D and Parson WW (1986) Picosecond study of the P+ I- Q → P+ IQ- electron transfer reaction in Rps. viridis reaction centers. Biophys J 49: 586a

  79. Kirmaier C, Blankenship RE, and Holten D (1986) Formation and decay of radical-pair state P+ I- in Chloroflexus aurantiacus reaction centers. Biochim Biophys Acta 850: 275–285

    Google Scholar 

  80. Kirmaier C, Holten D, Debus RJ, Feher G and Okamura MY (1986) Primary photochemistry of iron-depleted and zinc-reconstituted reaction centers from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 83: 6407–6411

    Google Scholar 

  81. Kleinfeld D, Okamura MY and Feher G (1984) Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: Evidence for light-induced structural changes. Biochem 23: 5780–5786

    Google Scholar 

  82. Kleinfeld D, Okamura MY and Feher G (1985) Charge recombination kinetics as a probe of protonation of the primary acceptor in photosynthetic reaction centers. Biophys J 48: 849–852

    Google Scholar 

  83. Knapp EW, Fischer SF, Zinth W, Sander M, Kaiser W, Deisenhofer J and Michel H (1985) Analysis of optical spectra from single crystals of Rhodopseudomonas viridis reaction centers. Proc Natl Acad Sci USA 82: 8463–8467

    Google Scholar 

  84. Knapp EW, Scherer POJ and Fischer SF (1986) Model studies of low-temperature optical transitions of photosynthetic reaction centers A-, LD-, CD-, ADMR- and LD-ADMR-spectra for Rhodopseudomonas viridis. Biochim Biophys Acta 852: 295–305

    Google Scholar 

  85. Lendzian F, Lubitz W, Scheer H, Bubenzer C and Mobius K (1981) In vivo liquid solution ENDOR and TRIPLE resonance of bacterial photosynthetic reaction centers of Rhodopseudomonas sphaeroides R-26. J Am Chem Soc 103: 4635–4637

    Google Scholar 

  86. Liang Y, Negus DK, Hochstrasser RM, Gunner M and Dutton PL (1981) Picosecond kinetic absorption studies of an iron porphyrin and bacteriochlorophyll using a streak camera. Chem Phys Lett 84: 236–240

    Google Scholar 

  87. Lockhart DJ and Boxer SG (1987) Magnitude and direction of the change in dipole moment associated with excitation of the primary electron donor in R. sphaeroides reaction centers. Biochem 26: 664–668

    Google Scholar 

  88. Lubitz W, Isaacson RA, Abresch EC, and Feher G (1984) 15N electron nuclear double resonance of the primary donor cation P865 + in reaction centers of Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 81: 7792–7796

    Google Scholar 

  89. Marcus RA and Sutin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 811: 265–322

    Google Scholar 

  90. Marcus RA (1987) Superexchange versus an intermediate BChl- mechanism in reactions of photosynthetic bacteria. Chem Phys Lett 133: 471–477

    Google Scholar 

  91. Maroti P, Kirmaier C, Wraight C, Holten D and Pearlstein RM (1985) Photochemistry and electron transfer in borohydride-treated photosynthetic reaction centers. Biochim Biophys Acta 810: 132–139

    Google Scholar 

  92. Martin J-L, Breton J, Hoff AJ, Migus A and Antonetti A (1986) Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8±0.2 psec. Proc Natl Acad Sci USA 83: 957–961

    Google Scholar 

  93. McLendon G and Miller JR (1985) The dependence of biological electron transfer rates on exothermicity: The cytochrome c/cytochrome b5 couple. J Am Chem Soc 107: 7811–7816

    Google Scholar 

  94. Meech SR, Hoff AJ and Wiersma DA (1985) Evidence for a very early intermediate in bacterial photosynthesis. A photon-echo and hole-burning study of the primary donor band in Rhodopseudomonas sphaeroides. Chem Phys Lett 121: 287–292

    Google Scholar 

  95. Meech SR, Hoff AJ and Wiersma DA (1986) The role of charge-transfer states in bacterial photosynthesis. Proc Natl Acad Sci USA 83: 9464–9468

    Google Scholar 

  96. Michel H, Epp O and Deisenhofer J (1986) Pigment protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis. EMBO J 5: 2445–2451

    Google Scholar 

  97. Miller JR (1986) Effects of distance, energy and molecular structure on long-distance electron-transfer between molecules. In: Michel-Beyerle ME (ed.) Antennas and Reaction centers of Photosynthetic Bacteria, pp 234–241. Berlin: Springer-Verlag

    Google Scholar 

  98. Moskowitz E and Malley MM (1978) Energy transfer and photooxidation kinetics in reaction centers on the picosecond time scale. Photochem Photobiol 27: 55–59

    Google Scholar 

  99. Netzel TL, Rentzepis PM, Tiede DM, Prince RC and Dutton PL (1977) Effect of reduction of the reaction center intermediate upon the picosecond oxidation reaction of the bacteriochlorophyll dimer in Chromatium vinosum and Rhodopseudomonas viridis. Biochim Biophys Acta 460: 467–479

    Google Scholar 

  100. Norris JR, Uphaus RTA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci USA 68: 625–628

    Google Scholar 

  101. Norris JR, Scheer H, Druyan ME and Katz JJ (1974) An electron-nuclear double resonance (endor) study of the special pair model for photo-reactive chlorophyll in photosynthesis. Proc Natl Acad Sci USA 71: 4897–4900

    Google Scholar 

  102. Norris JR, Bowman MK, Budil DE, Tang J, Wraight CA and Closs GL (1982) Magnetic characterization of the primary state of bacterial photosynthesis. Proc Natl Acad Sci USA 79: 5532–5536

    Google Scholar 

  103. Nuijs AM, Vasmel H, Duysens LNM and Amesz J (1986) Antenna and reaction-center processes upon picosecond-flash excitation of membranes of the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 849: 316–324

    Google Scholar 

  104. Nuijs AM, van Grondelle R, Joppe HLP, van Bochove AC and Duysens LNM (1986) A picosecond-absorption study on bacteriochlorophyll excitation, trapping and primary-charge separation in chromatophores of Rhodospirillum rubrum. Biochim Biophys Acta 850: 286–293

    Google Scholar 

  105. Okamura MY, Isaacson RA and Feher G (1975) Primary acceptor in bacterial photosynthesis: Obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 72: 3491–3495

    Google Scholar 

  106. Okamura MY, Isaacson RA and Feher G (1979) Spectroscopic and kinetic properties of the transient intermediate acceptor in reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 546: 394–417

    Google Scholar 

  107. Okamura MY, Feher G and Nelson N (1982) Reaction centers. In: Govindjee (ed.) Photosynthesis: Energy Conversion by Plants and Bacteria, pp 195–272. New York: Academic Press

    Google Scholar 

  108. Okamura MY and Feher G (1986) Isotope effect on electron transfer in reaction centers from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 83: 8152–8156

    Google Scholar 

  109. Owens TG, Webb SP, Mets L, Alberte RS and Fleming GR (1987) Antenna size dependence of fluorescence decay in the core and antenna of photosystem I: Estimation of charge separation and energy transfer rates. Proc Natl Acad Sci USA 84: 1532–1536

    Google Scholar 

  110. Paillotin G, Vermeglio A and Breton J (1979) Orientation of reaction center and antenna chromophores in the photosynthetic membrane of Rhodopseudomonas viridis. Biochim Biophys Acta 545: 249–264

    Google Scholar 

  111. Parot P, Delmas N, Garcia D and Vermeglio A (1985) Structure of Chloroflexus aurantiacus reaction center: photoselection at low temperature. Biochim Biophys Acta 809: 137–140

    Google Scholar 

  112. Parson WW, Clayton RK and Cogdel RJ (1975) Excited states of photosynthetic reaction centers at low redox potentials. Biochim Biophys Acta 387: 265–278

    Google Scholar 

  113. Parson WW and Ke B (1982) Primary photochemical reactions. In: Govindjee (ed.) Photosynthesis: Energy Conversion by Plants and Bacteria, pp 331–385. New York: Academic Press

    Google Scholar 

  114. Parson WW, Scherz A and Warshel A (1985) Calculations of spectroscopic properties of bacterial reaction centers. In: Michel-Beyerle ME (ed.) Antennas and Reaction Centers of Photosynthetic Bacteria, pp 122–130. Berlin: Springer-Verlag

    Google Scholar 

  115. Parson WW (1987) The bacterial reaction center. In: Amesz J (ed.) Photosynthesis, Amsterdam: Elsevier, (in press)

    Google Scholar 

  116. Parson WW and Warshel A (1987) The spectroscopic properties of photosynthetic reaction centers II. Applications of the theory to Rhodopseudomonas viridis. J Am Chem Soc (in press)

  117. Paschenko VZ, Korvatovskii BN, Kononenko AA, Chamorovsky SK and Rubin AB (1985) Estimation of the rate of photochemical charge separation in Rhodopseudomonas sphaeroides reaction centers by fluorescence and absorption picosecond spectroscopy. FEBS Lett 191: 245–248

    Google Scholar 

  118. Pearlstein RM (1987) Structure and exciton effects in photosynthesis. In: Amesz J (ed.) Photosynthesis, Amsterdam: Elsevier (in press)

    Google Scholar 

  119. Peters K, Avouris P and Rentzepis PM (1978) Picosecond dynamics of primary electron-transfer processes in bacterial photosynthesis. Biophys J 23: 207–219

    Google Scholar 

  120. Pierson BK and Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-F1. Proc Natl Acad Sci USA 80: 80–84

    Google Scholar 

  121. Prince RC, Leigh JS and Dutton PL (1976) Thermodynamic properties of the reaction center of Rhodopseudomonas viridis. In vivo measurement of the reaction center bacteriochlorophyll-primary acceptor intermediary electron carrier. Biochim Biophys Acta 440: 622–636

    Google Scholar 

  122. Prince RC, Tiede DM, Thornber JP and Dutton PL (1977) Spectroscopic properties of the intermediary electron carrier in the reaction center of Rhodopseudomonas viridis. Evidence for its interaction with the primary acceptor. Biochim Biophys Acta 462: 467–490

    Google Scholar 

  123. Reed DW and Clayton RK (1968) Isolation of a reaction center fraction from Rhodopseudomonas sphaeroides. Biochem Biophys Res Commun 30: 471–475

    Google Scholar 

  124. Robert B, Lutz M and Tiede DM (1985) Selective photochemical reduction of either of the two bacteriopheophytins in reaction centers of Rps. sphaerodies R-26. FEBS Lett 183: 326–330

    Google Scholar 

  125. Robert B and Lutz M (1986) Structure of the primary donor of Rhodopseudomonas sphaeroides: Difference resonance Raman spectroscopy of reaction centers. Biochem 25: 2303–2309

    Google Scholar 

  126. Rockley MG, Windsor MW, Cogdell RJ and Parson WW (1975) Picosecond detection of an intermediate in the photochemical reaction of bacterial photosynthesis. Proc Natl Acad Sci USA 72: 2251–2255

    Google Scholar 

  127. Rutherford AW, Agalidis I and Reiss-Husson F (1985) Manganese-quinone interactions in the electron acceptor region of bacterial photosynthetic reaction centers. FEBS Lett 182: 151–157

    Google Scholar 

  128. Sarai A (1980) Possible role of protein in photosynthetic electron transfer. Biochim Biophys Acta 589: 71–83

    Google Scholar 

  129. Schenck CG, Parson WW, Holten D and Windsor MW (1981) Transient states in reaction centers containing reduced bacteriopheophytin. Biochim Biophys Acta 635: 383–392

    Google Scholar 

  130. Schenck CG, Parson WW, Holten D, Windsor MW and Sarai A (1981) Temperature dependence of electron transfer between bacteriopheophytin and ubiquinone in protonated and deuterated reaction centers of Rhodopseudomonas sphaeroides. Biophys J 36: 479–489

    Google Scholar 

  131. Scherer POJ and Fischer SF (1986) On the Stark effect for bacterial photosynthetic reaction centers. Chem Phys Lett 131: 153–159

    Google Scholar 

  132. Seftor REB and Thornber JP (1984) The photochemical reaction center of the bacteriochlorophyll b-containing organism Thiocapsa pfennigii. Biochim Biophys Acta 764: 148–159

    Google Scholar 

  133. Shopes RJ and Wraight CA (1985) The acceptor quinone complex of Rhodopseudomonas viridis reaction centers. Biochim Biophys Acta 806: 348–356

    Google Scholar 

  134. Shuvalov VA and Klimov W (1976) The primary photoreactions in the complex cytochrome-P-890 P-760 (bacteriopheophytin 760) of Chromatium minutissimum at low redox potentials. Biochim Biophys Acta 440: 587–599

    Google Scholar 

  135. Shuvalov VA, Krakhmaleva LN and Klimov VV (1976) Photooxidation of P-960 and photoreduction of P-800 (bacteriopheophytin b-800) in reaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta 449: 597–601

    Google Scholar 

  136. Shuvalov VA, Klevanik AV, Sharkov AV, Matveetz JuA and Krukov PG (1978) Picosecond detection of BChl-800 as an intermediate electron carrier between selectively-excited P870 and bacteriopheophytin in Rhodospirillum rubrum reaction centers. FEBS Lett 91: 135–139

    Google Scholar 

  137. Shuvalov VA and Asadov AA (1979) Arrangement and interaction of pigment molecules in reaction centers of Rhodopseudomonas viridis. Biochim Biophys Acta 545: 296–308

    Google Scholar 

  138. Shuvalov VA and Parson WW (1981) Energies and kinetics of radical pairs involving bacteriochlorophyll and bacteriopheophytin in bacterial reaction centers. Proc Natl Acad Sci USA 78: 957–961

    Google Scholar 

  139. Shuvalov VA and Klevanik AV (1983) The study of the state [P870+ B800-] in bacterial reaction centers by selective picosecond and low-temperature spectroscopies. FEBS Lett 160: 51–55

    Google Scholar 

  140. Shuvalov VA, Shkuropatov A Ya, Kulakova SM, Ismailov MA and Shkuropatova VA (1986) Photoreactions of bacteriopheophytins and bacteriochlorophylls in reaction centers of Rhodopseudomonas sphaeroides and Chloroflexus aurantiacus. Biochim Biophys Acta 849: 337–346

    Google Scholar 

  141. Shuvalov VA, Amesz J and Duysens LNM (1986) Picosecond charge separation upon selective excitation of the primary electron donor in reaction centers of Rhodopseudomonas viridis. Biochim Biophys Acta 851: 327–330

    Google Scholar 

  142. Shuvalov VS and Duysens LNM (1986) Primary electron transfer reactions in modified reaction centers from Rhodopseudonomas sphaeroides. Proc Natl Acad Sci USA 83: 1690–1694

    Google Scholar 

  143. Shuvalov VA, Vasmel H, Amesz J and Duysens LNM (1986) Picosecond spectroscopy of the charge separation in reaction centers of Chloroflexus aurantiacus with selective excitation of the primary electron donor. Biochim Biophys Acta 851: 361–368

    Google Scholar 

  144. Straley SC, Parson WW, Mauzerall DC and Clayton RK (1973) Pigment content and molar extinction coefficients of photochemical reaction centers from Rhodopseudomonas sphaeroides. Biochim Biophys Acta 305: 597–609

    Google Scholar 

  145. Tait CD and Holten D (1983) Effects of Mg-solvent coordination state on some excited state processes of bacteriochlorophyll a. Photobiochem Photobiophys 6: 201–209

    Google Scholar 

  146. Thurnauer MC, Katz JJ and Norris JR (1975) The triplet state in bacterial photosynthesis: Possible mechanisms of the primary photo-act. Proc Natl Acad Sci USA 72: 3270–3274

    Google Scholar 

  147. Tiede DM, Kellogg E and Breton J (1987) Conformation changes following reduction of the bacteriopheophytin electron acceptor in reaction centers of Rhodopseudomonas Viridis. Biochim Biophys Acta (in press)

  148. Tiede DM, Prince RC and Dutton PL (1976) EPR and optical spectroscopic properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum. Biochim Biophys Acta 449: 447–467

    Google Scholar 

  149. Tiede DM, Choquet Y and Breton J (1985) Geometry for the primary electron donor and the bacteriopheophytin acceptor in Rhodopseudomonas viridis photosynthetic reaction centers. Biophys J 47: 443–447

    Google Scholar 

  150. van Grondelle R, Romijn JC and Holmes NG (1976) Photoreduction of the long wavelength bacteriopheophytin in reaction centers and chromatophores of the photosynthetic bacterium Chromatium vinosum. FEBS Lett 72: 187–192

    Google Scholar 

  151. van der Rest M and Gingras G (1974) The pigment complement of the photosynthetic reaction center isolated from Rhodospirillum rubrum. J Biol Chem 249: 6446–6453

    Google Scholar 

  152. Vasmel H and Amesz J (1983) Photoreduction of menaquinone in the reaction center of the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 724: 118–122

    Google Scholar 

  153. Vasmel H, Meiburg RF, Kramer HJM, de Vos LJ and Amesz J (1983) Optical properties of the photosynthetic reaction center of Chloroflexus aurantiacus at low temperature. Biochim Biophys Acta 724: 333–339

    Google Scholar 

  154. Vasmel H, Amesz J and Hoff AJ (1986) Analysis by exciton theory of the optical properties of the Chloroflexus aurantiacus reaction center. Biochim Biophys Acta 852: 159–168

    Google Scholar 

  155. Vermeglio A and Clayton RK (1976) Orientation of chromophores in reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 449: 500–515

    Google Scholar 

  156. Vermeglio A, Breton J, Paillotin G and Cogdell R (1978) Orientation of chromophores in reaction centers of Rhodopseudomonas sphaeroides: A photoselection study. Biochim Biophys Acta 501: 514–530

    Google Scholar 

  157. Vermeglio A and Paillotin G (1982) Structure of Rhodopseudomonas viridis reaction centers absorption and photoselection at low temperatures. Biochim Biophys Acta 681: 32–40

    Google Scholar 

  158. Warshel A (1980) Role of the chlorophyll dimer in bacterial photosynthesis. Proc Natl Acad Sci USA 77: 3105–3109

    Google Scholar 

  159. Warshel A and Parson WW (1987) The spectroscopic properties of photosynthetic reaction centers I. Theory. J Am Chem Soc (in press)

  160. Wasielewski MR, Niemczyk MP, Svec WA and Pewitt EB (1985) Dependence of rate constants for photoinduced charge separation and dark charge recombination on the free energy of reaction in restricted-distance porphyrin-quinone molecules. J Am Chem Soc 107: 1080–1082

    Google Scholar 

  161. Wasielewski MR and Tiede DM (1986) Sub-picosecond measurements of primary electron transfer in Rhodopseudomonas viridis reaction centers using near-infrared excitation. FEBS Lett 204: 368–372

    Google Scholar 

  162. Woodbury NWT and Parson WW (1984) Nanosecond fluorescence from isolated photosynthetic reaction centers of Rhodopseudomas sphaeroides Biochim Biophys Acta 767: 345–361

    Google Scholar 

  163. Woodbury NW, Becker M, Middendorf D and Parson WW (1985) Picosecond kinetics of the initial photochemical electron-transfer reaction in bacterial photosynthetic reaction centers. Biochem 24: 7516–7521

    Google Scholar 

  164. Woodbury NW, Parson WW, Gunner MR, Prince RC and Dutton PL (1986) Radicalpair energetics and decay mechanisms in reaction centers containing anthraquinones, napthoquinones or benzoquinones in place of ubiquinones. Biochim Biophys Acta 851: 6–22

    Google Scholar 

  165. Woodbury NW and Parson WW (1986) Nanosecond fluorescence from chromatophores of Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. Biochim Biophys Acta 850: 197–210

    Google Scholar 

  166. Wraight CA and Clayton RK (1977) The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 333: 246–260

    Google Scholar 

  167. Zinth W, Knapp EW, Fischer SF, Kaiser W, Deisenhofer J and Michel H (1985) Correlation of structural and spectroscopic properties of a photosynthetic reaction centers. Chem Phys Lett 119: 1–4

    Google Scholar 

  168. Zinth W, Kaiser W and Michel H (1983) Efficient photochemical activity and strong dichroism of single crystals of reaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta 723: 128–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirmaier, C., Holten, D. Primary photochemistry of reaction centers from the photosynthetic purple bacteria. Photosynth Res 13, 225–260 (1987). https://doi.org/10.1007/BF00029401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029401

Key words

Navigation