Skip to main content
Log in

Discovery of MicroRNAs from Batrachuperus yenyuanensis Using Deep Sequencing and Prediction of Their Targets

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs), a family of ~22-nucleotide non-coding single-stranded RNA molecules, are considered as key post-transcriptional regulators of gene expression that regulate various biological processes in living organism. Many miRNAs have been identified in animals; however, few have been reported in Hynobiidae species. The present study is aimed to identify a full repertoire of miRNAs in Batrachuperus yenyuanensis (Yenyuan stream salamander), which would significantly increase our knowledge of miRNAs in amphibians. A small RNA library was constructed from B. yenyuanensis and sequenced using deep sequencing. As a result, 1,717,751 clean reads were obtained, representing 356 known and 80 novel miRNAs. Additionally, expression levels of eight randomly selected miRNAs in B. yenyuanensis were confirmed using the stem-loop quantitative real-time reverse transcription PCR. In addition, 13,972 targets were predicted for these identified miRNAs, although the physiological functions of many of these targets remain unknown. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that the predicted targets are involved in a variety of physiological regulatory functions in B. yenyuanensis. These results provide useful information for further research on the miRNAs involved in the growth and development of B. yenyuanensis, as well as adaptation of this species to its high-altitude habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GO:

gene ontology (analysis)

KEGG:

Kyoto Encyclopedia of Genes and Genomes (enrichment analysis)

miRNA (miR):

microRNA

nt:

nucleotide

PC:

predicted candidate

snRNA:

small nuclear RNA

snoRNA:

small nucleolar RNA

UTR:

untranslated region

References

  1. Alwin Prem Anand, A., Huber, C., Asnet Mary, J., Gallus, N., Leucht, C., Klafke, R., Hirt, B., and Wizenmann, A. (2018) Expression and function of microRNA–9 in the mid–hindbrain area of embryonic chick, BMC Dev. Biol., 18, 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sun, K., and Lai, E. C. (2013) Adult–specific functions of animal microRNAs, Nat. Rev. Genet., 14, 535–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Warf, M. B., Johnson, W. E., and Bass, B. L. (2011) Improved annotation of C. elegans microRNAs by deep sequencing reveals structures associated with processing by Drosha and Dicer, RNA, 17, 563–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seitz, H., Tushir, J. S., and Zamore, P. D. (2011) A 5′–uri–dine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA–induced silencing complex formation, Silence, 2, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cambronne, X. A., Shen, R., Auer, P. L., and Goodman, R. H. (2012) Capturing microRNA targets using an RNA–induced silencing complex (RISC)–trap approach, Proc. Natl. Acad. Sci. USA, 109, 20473–20478.

    Article  PubMed  Google Scholar 

  6. Ota, H., Sakurai, M., Gupta, R., Valente, L., Wulff, B. E., Ariyoshi, K., Iizasa, H., Davuluri, R. V., and Nishikura, K. (2013) ADAR1 forms a complex with Dicer to promote microRNA processing and RNA–induced gene silencing, Cell, 153, 575–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo, J., Wang, Y., Yuan, J., Zhao, Z., and Lu, J. (2018) MicroRNA duplication accelerates the recruitment of new targets during vertebrate evolution, RNA, 24, 787–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P. (2005) Combinatorial microRNA target predictions, Nat. Genet., 37, 495–500.

    Article  CAS  PubMed  Google Scholar 

  9. Ameres, S. L., and Zamore, P. D. (2013) Diversifying microRNA sequence and function, Nat. Rev. Mol. Cell Biol., 14, 475–488.

    Article  CAS  PubMed  Google Scholar 

  10. Maltby, S., Plank, M., Tay, H. L., Collison, A., and Foster, P. S. (2016) Targeting microRNA function in respiratory diseases: mini–review, Front. Physiol., 7, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Clark, E. A., Kalomoiris, S., Nolta, J. A., and Fierro, F. A. (2014) Concise review: microRNA function in multipotent mesenchymal stromal cells, Stem Cells, 32, 1074–1082.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, Y., Shen, X. J., Zou, Q., Wang, S. P., Tang, S. M., and Zhang, G. Z. (2011) Biological functions of microRNAs: a review, J. Physiol. Biochem., 67, 129–139.

    Article  CAS  PubMed  Google Scholar 

  13. Fu, J., and Zeng, X. (2008) How many species are in the genus Batrachuperus? A phylogeographical analysis of the stream salamanders (family Hynobiidae) from southwest–ern China, Mol. Ecol., 17, 1469–1488.

    Article  CAS  PubMed  Google Scholar 

  14. Lu, B., Zheng, Y., Murphy, R. W., and Zeng, X. (2012) Coalescence patterns of endemic Tibetan species of stream salamanders (Hynobiidae: Batrachuperus), Mol. Ecol., 21, 3308–3324.

    Article  PubMed  Google Scholar 

  15. Huang, Z. S., Yu, F. L., Gong, H. S., Song, Y. L., Zeng, Z. G., and Zhang, Q. (2017) Phylogeographical structure and demographic expansion in the endemic alpine stream sala–mander (Hynobiidae: Batrachuperus) of the Qinling Mountains, Sci. Rep., 7, 1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang, J. P., Jia, J., Zhang, M., and Gao, K. Q. (2018) Osteology of Batrachuperus londongensis (Urodela, Hynobiidae): study of bony anatomy of a facultatively neotenic salamander from Mount Emei, Sichuan Province, China, Peer J., 6, e4517.

    Google Scholar 

  17. Che, R., Sun, Y., Wang, R., and Xu, T. (2014) Transcrip–tomic analysis of endangered Chinese salamander: identifi–cation of immune, sex and reproduction–related genes and genetic markers, PLoS One, 9, e87940.

    Google Scholar 

  18. Huang, Y., Gong, W., Ren, H., Xiong, J., Gao, X., and Sun, X. (2017) Identification of the conserved and novel microRNAs by deep sequencing and prediction of their tar–gets in Topmouth culter, Gene, 626, 298–304.

    Article  CAS  PubMed  Google Scholar 

  19. Sui, W., Liu, F., Chen, J., Ou, M., and Dai, Y. (2014) Evaluating a particular circulating microRNA species from an SLE patient using stem–loop qRT–PCR, Methods Mol. Biol., 1134, 201–209.

    Article  CAS  PubMed  Google Scholar 

  20. Ju, Z., Jiang, Q., Liu, G., Wang, X., Luo, G., Zhang, Y., Zhang, J., Zhong, J., and Huang, J. (2018) Solexa sequenc–ing and custom microRNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis, Anim. Genet., 49, 3–18.

    Article  CAS  PubMed  Google Scholar 

  21. Meng, Y., Tian, H., Hu, Q., Liang, H., Zeng, L., and Xiao, H. (2018) MicroRNA repertoire and comparative analysis of Andrias davidianus infected with ranavirus using deep sequencing, Dev. Comp. Immunol., 85, 108–114.

    Article  CAS  PubMed  Google Scholar 

  22. Feng, X., Zhou, X., Zhou, S., Wang, J., and Hu, W. (2018) Analysis of microRNA profile of Anopheles sinensis by deep sequencing and bioinformatic approaches, Parasit. Vectors, 11, 172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, X., Li, Q., Wang, J., Guo, X., Jiang, X., Ren, Z., Weng, C., Sun, G., Wang, X., Liu, Y., Ma, L., Chen, J. Y., Zen, K., Zhang, J., and Zhang, C. Y. (2009) Identification and characterization of novel amphioxus microRNAs by Solexa sequencing, Genome Biol., 10, R78.

    Book  Google Scholar 

  24. Cowled, C., Stewart, C. R., Likic, V. A., Friedlander, M. R., Tachedjian, M., Jenkins, K. A., Tizard, M. L., Cottee, P., Marsh, G. A., Zhou, P., Baker, M. L., Bean, A. G., and Wang, L. F. (2014) Characterization of novel microRNAs in the Black flying fox (Pteropus alecto) by deep sequencing, BMC Genomics, 15, 682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, Z. H., Wei, J. H., Yang, Y., Zhang, Z., Xiong, H. Y., and Zhao, W. T. (2012) Identification of conserved and novel microRNAs in Aquilaria sinensis based on small RNA sequencing and transcriptome sequence data, Gene, 505, 167–175.

    Article  CAS  PubMed  Google Scholar 

  26. Ro, S., Song, R., Park, C., Zheng, H., Sanders, K. M., and Yan, W. (2007) Cloning and expression profiling of small RNAs expressed in the mouse ovary, RNA, 13, 2366–2380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Michalak, P., and Malone, J. H. (2008) Testis–derived microRNA profiles of African clawed frogs (Xenopus) and their sterile hybrids, Genomics, 91, 158–164.

    Article  CAS  PubMed  Google Scholar 

  28. Bannister, S. C., Tizard, M. L., Doran, T. J., Sinclair, A. H., and Smith, C. A. (2009) Sexually dimorphic microRNA expression during chicken embryonic gonadal development, Biol. Reprod., 81, 165–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mueller, A. C., Sun, D., and Dutta, A. (2013) The miR–99 family regulates the DNA damage response through its tar–get SNF2H, Oncogene, 32, 1164–1172.

    Article  CAS  PubMed  Google Scholar 

  30. Sun, J., Chen, Z., Tan, X., Zhou, F., Tan, F., Gao, Y., Sun, N., Xu, X., Shao, K., and He, J. (2013) MicroRNA–99a/100 promotes apoptosis by targeting mTOR in human esophageal squamous cell carcinoma, Med. Oncol., 30, 411.

    Article  CAS  PubMed  Google Scholar 

  31. Dey, B. K., Gagan, J., Yan, Z., and Dutta, A. (2012) miR–26a is required for skeletal muscle differentiation and regeneration in mice, Genes Dev., 26, 2180–2191.

    CAS  PubMed  Google Scholar 

  32. Zhang, Y. F., Zhang, A. R., Zhang, B. C., Rao, Z. G., Gao, J. F., Lv, M. H., Wu, Y. Y., Wang, S. M., Wang, R. Q., and Fang, D. C. (2013) MiR–26a regulates cell cycle and anoikis of human esophageal adenocarcinoma cells through Rb1–E2F1 signaling pathway, Mol. Biol. Rep., 40, 1711–1720.

    Article  CAS  PubMed  Google Scholar 

  33. Bouhallier, F., Allioli, N., Lavial, F., Chalmel, F., Perrard, M. H., Durand, P., Samarut, J., Pain, B., and Rouault, J. P. (2010) Role of miR–34c microRNA in the late steps of spermatogenesis, RNA, 16, 720–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niu, Z., Goodyear, S. M., Rao, S., Wu, X., Tobias, J. W., Avarbock, M. R., and Brinster, R. L. (2011) MicroRNA–21 regulates the self–renewal of mouse spermatogonial stem cells, Proc. Natl. Acad. Sci. USA, 108, 12740–12745.

    Article  PubMed  Google Scholar 

  35. Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y. Y. (2007) miR–21–mediated tumor growth, Oncogene, 26, 2799–2803.

    CAS  Google Scholar 

  36. Liu, H., Cheng, L., Cao, D., and Zhang, H. (2018) Suppression of miR–21 expression inhibits cell proliferation and migration of liver cancer cells by targeting phosphatase and tensin homolog (PTEN), Med. Sci. Monit., 24, 3571–3577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000) The 21–nucleotide let–7RNA regulates developmental timing in Caenorhabditis elegans, Nature, 403, 901–906.

    Article  CAS  PubMed  Google Scholar 

  38. Tan, T. T., Chen, M., Harikrishna, J. A., Khairuddin, N., Mohd Shamsudin, M. I., Zhang, G., and Bhassu, S. (2013) Deep parallel sequencing reveals conserved and novel miRNAs in gill and hepatopancreas of giant freshwater prawn, Fish. Shellfish. Immunol., 35, 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  39. Yakovlev, I. A., and Fossdal, C. G. (2017) In silico analysis of small RNAs suggest roles for novel and conserved miRNAs in the formation of epigenetic memory in somat–ic embryos of Norway spruce, Front. Physiol., 8, 674.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Juan, L., Tong, H. L., Zhang, P., Guo, G., Wang, Z., Wen, X., Dong, Z., and Tian, Y. P. (2014) Identification and characterization of novel serum microRNA candidates from deep sequencing in cervical cancer patients, Sci. Rep., 4, 6277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang, P., Wu, H., Wang, W., Ma, W., Sun, X., and Lu, Z. (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features, Nucleic Acids Res., 35, W339–344.

    Google Scholar 

  42. Huang, Y., Ren, H. T., Xiong, J. L., Gao, X. C., and Sun, X. H. (2017) Identification and characterization of known and novel microRNAs in three tissues of Chinese giant salamander base on deep sequencing approach, Genomics, 109, 258–264.

    Article  CAS  PubMed  Google Scholar 

  43. Harding, J. L., Horswell, S., Heliot, C., Armisen, J., Zimmerman, L. B., Luscombe, N. M., Miska, E. A., and Hill, C. S. (2014) Small RNA profiling of Xenopus embryos reveals novel miRNAs and a new class of small RNAs derived from intronic transposable elements, Genome Res., 24, 96–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Islam, M. T., Ferdous, A. S., Najnin, R. A., Sarker, S. K., and Khan, H. (2015) High–throughput sequencing reveals diverse sets of conserved, nonconserved, and species–spe–cific miRNAs in jute, Int. J. Genomics, 2015, 125048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, J., Liu, Y., Zhang, X., Pan, J., Nie, Z., Zhang, W., Yu, W., Chen, J., Liu, L., Li, J., Zhang, Y., Guo, J., Wu, W., Zhu, H., and Lv, Z. (2013) The identification of microRNAs in the whitespotted bamboo shark (Chiloscyllium plagiosum) liver by Illumina sequencing, Gene, 527, 259–265.

    Article  CAS  PubMed  Google Scholar 

  46. Huang, S., Cao, X., Tian, X., and Wang, W. (2016) High–throughput sequencing identifies microRNAs from posteri–or intestine of loach (Misgurnus anguillicaudatus) and their response to intestinal air–breathing inhibition, PLoS One, 11, e0149123.

    Google Scholar 

  47. Andreassen, R., Worren, M. M., and Hoyheim, B. (2013) Discovery and characterization of miRNA genes in Atlantic salmon (Salmo salar) by use of a deep sequencing approach, BMC Genomics, 14, 482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andreassen, R., Rangnes, F., Sivertsen, M., Chiang, M., Tran, M., and Worren, M. M. (2016) Discovery of miRNAs and their corresponding miRNA genes in Atlantic cod (Gadus morhua): use of stable miRNAs as reference genes reveals subgroups of miRNAs that are highly expressed in particular organs, PLoS One, 11, e0153324.

    Google Scholar 

  49. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281–297.

    Article  CAS  Google Scholar 

  50. Hoss, A. G., Kartha, V. K., Dong, X., Latourelle, J. C., Dumitriu, A., Hadzi, T. C., Macdonald, M. E., Gusella, J. F., Akbarian, S., Chen, J. F., Weng, Z., and Myers, R. H. (2014) MicroRNAs located in the Hox gene clusters are implicated in Huntington’s disease pathogenesis, PLoS Genet., 10, e1004188.

    Book  Google Scholar 

  51. Castellano, L., Rizzi, E., Krell, J. 2015) The germline of the malaria mos–quito produces abundant miRNAs, endo–siRNAs, piRNAs and 29–nt small RNAs, BMC Genomics, 16, 100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xia, J. H., He, X. P., Bai, Z. Y., and Yue, G. H. (2011) Identification and characterization of 63 microRNAs in the Asian seabass Lates calcarifer, PLoS One, 6, e17537.

    Book  Google Scholar 

  53. Samad, A. F. A., Nazaruddin, N., Murad, A. M. A., Jani, J., Zainal, Z., and Ismail, I. (2018) Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome, 3 Biotech., 8, 136.

    PubMed  Google Scholar 

  54. Alizadeh, E., Akbarzadeh, A., Eslaminejad, M. B., Barzegar, A., Hashemzadeh, S., Nejati–Koshki, K., and Zarghami, N. (2015) Up–regulation of liver–enriched tran–scription factors HNF4a and HNF6 and liver–specific microRNA (miR–122) by inhibition of let–7b in mesenchy–mal stem cells, Chem. Biol. Drug Des., 85, 268–279.

    Article  CAS  PubMed  Google Scholar 

  55. Ow, M. C., Martinez, N. J., Olsen, P. H., Silverman, H. S., Barrasa, M. I., Conradt, B., Walhout, A. J., and Ambros, V. (2008) The FLYWCH transcription factors FLH–1, FLH–2, and FLH–3 repress embryonic expression of microRNA genes in C. elegans, Genes Dev., 22, 2520–2534.

    CAS  Google Scholar 

  56. Su, S., Wang, Y., Wang, H., Huang, W., Chen, J., Xing, J., Xu, P., Yuan, X., Huang, C., and Zhou, Y. (2018) Comparative expression analysis identifies the respiratory transition–related miRNAs and their target genes in tissues of metamorphosing Chinese giant salamander (Andrias davidianus), BMC Genomics, 19, 406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Huang or J. Xiong.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 4, pp. 520–531.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM18–202, December 24, 2018.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Xiong, J., Brown, P.B. et al. Discovery of MicroRNAs from Batrachuperus yenyuanensis Using Deep Sequencing and Prediction of Their Targets. Biochemistry Moscow 84, 380–389 (2019). https://doi.org/10.1134/S0006297919040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919040059

Keywords

Navigation