Skip to main content
Log in

Overexpression and Characterization of Endo-1,4-β-xylanase from Fibrobacter succinogenes in Pichia pastoris

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Fibrobacter succinogenes is a major cellulolytic anaerobic bacterium in the gut of herbivores and possesses genes with a wide range of hemicellulolytic activities. Endo-l,4-β-xylanase (EC.3.2.1.8) is a key member of the xylanolytic enzyme system and is widely used in animal feed, food, papermaking and medicine. In this research, the nucleotide-optimized endo-l,4-β-xylanase gene Xynm derived from the Fisuc_2442 gene of F. succinogenes was expressed in Pichia pastoris GS115. Carbon sources were optimized to facilitate recombinant xylanase Xynm production in high-cell-density fermentation. Characterization of the enzymatic properties of Xynm showed that it was overexpressed in P. pastoris by high-cell-density fermentation. Xynm had high specific activities toward various xylose polymers but low activity toward glucose-based polysaccharides. By methanol or a mixture of sorbitol/methanol (2 : 20 (wt/vol)) induction, the maximum specific activity of 6382 and 13821 U/mg protein was achieved with wheat flour arabinoxylan (high viscosity) as the substrate, and the maximum biomass was 111 and 161 g/L, respectively. Xynm exhibited optimal catalytic activity at pH 5.5 and 37°C and maintained over 80% of the initial activity after incubation at pH from 4.5 to 6.5 or from 10 to 50°C for 1 h. The enzyme activity was increased by Ba2+ and inhibited by Fe2+, Zn2+, and Ag+. Compared with corn, Xynm hydrolyzed wheat and released more reducing sugars. In summary, Xynm has high enzyme activity and moderate reaction conditions and shows promising application prospects for animal husbandry to improve the digestion of plant feedstuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bastawde, K.B., World J. Microbiol. Biotechnol., 1992, vol. 8, pp. 353–368. https://doi.org/10.1007/BF01198746

    Article  PubMed  CAS  Google Scholar 

  2. Collins, T., Gerday, C., and Feller, G., FEMS Microbiol. Rev., 2005, vol. 29, pp. 3–23. https://doi.org/10.1016/j.femsre.2004.06.005

    Article  PubMed  CAS  Google Scholar 

  3. Ransom-Jones, E., Jones, D.L., Mccarthy, A.J., McDonald, J.E., Microb. Ecol., 2012, vol. 63, pp. 267–281. https://doi.org/10.1007/s00248-011-9998-1

    Article  PubMed  CAS  Google Scholar 

  4. Suen, G., Weimer, P.J., Stevenson, D.M., Aylward, F.O., Boyum, J., Deneke, J., et al., PLoS One, 2011, vol. 6, p. e18814. https://doi.org/10.1371/journal.pone.0018814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Paradis, F.W., Zhu, H., Krell, P.J., Phillips, J.P., and Forsberg, C.W., J. Bacteriol., 1993, vol. 175, pp. 7666–7672. https://doi.org/10.1128/jb.175.23.7666-7672.1993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Jun, H.S., Ha, J.K., Malburh, L.M., Verrinder, G.A., and Forsberg, C.W., Can. J. Microbiol., 2003, vol. 49, pp. 171–180. https://doi.org/10.1139/w03-024

    Article  PubMed  CAS  Google Scholar 

  7. Brumm, P., Mead, D., Boyum, J., Drinkwater, C., Deneke J, Gowda, K., et al., Appl. Biochem. Biotechnol., 2011, vol. 163, pp. 649–657. https://doi.org/10.1007/s12010-010-9070-5

    Article  PubMed  CAS  Google Scholar 

  8. Liu, J.R., Yu, B., Zhao, X., and Cheng, K.J., Appl. Microbiol. Biotechnol., 2007, vol. 77, pp. 117–124. https://doi.org/10.1007/s00253-007-1123-5

    Article  PubMed  CAS  Google Scholar 

  9. Huang, H., Yang, P., Luo, H., Tang, H., Shao, N., Yuan, T., et al., Appl. Microbiol. Biotechnol., 2008, vol. 78, pp. 95–103. https://doi.org/10.1007/s00253-007-1290-4

    Article  PubMed  CAS  Google Scholar 

  10. Lu, Y., Fang, C., Wang, Q., Zhou, Y., Zhang, G., and Ma, Y., Sci. Rep., 2016, vol. 6, p. 37869. https://doi.org/10.1038/srep37869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  12. Higgins, D.R. and Cregg, J.M., Methods in Molecular Biology: Pichia Protocols. Totowa, NJ: Humana Press, 1998, vol. 103, pp. 107–120.

    Book  Google Scholar 

  13. Miller, G.L., Anal. Chem., 1959, vol. 31, pp. 426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  14. Teather, R.M., and Wood, P.J., Appl. Environ. Microbiol., 1982, vol. 43, pp. 777–780. https://doi.org/10.1128/AEM.43.4.777-780.1982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jiao, L., Zhou, Q., Su, Z., Xu, L., and Yan, Y., Protein Expr. Purif., 2018, vol. 147, pp. 1–12. https://doi.org/10.1016/j.pep.2018.02.005

    Article  PubMed  CAS  Google Scholar 

  16. Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  17. Shen, Y., Gu, L., Zhang, J., Chen, J., and Du, G., Chin. J. Biotechnol., 2013, vol. 29, pp. 927–936.

    CAS  Google Scholar 

  18. Sriyapai, T., Somyoonsap, P., Matsui, K., Kawai, F., and Chansiri, K., J. Biosci. Bioeng., 2011, vol. 111, pp. 528–536. https://doi.org/10.1016/j.jbiosc.2010.12.024

    Article  PubMed  CAS  Google Scholar 

  19. McHunu, N.P., Singh, S., and Permaul, K., J. Biotechnol., 2009, vol. 141, pp. 26–30. https://doi.org/10.1016/j.jbiotec.2009.02.021

    Article  PubMed  CAS  Google Scholar 

  20. Orman, M.A., Çalik, P., and Özdamar, T.H., Biotechnol. Appl. Biochem., 2009, vol. 52, pp. 245–255. https://doi.org/10.1042/BA20080057

    Article  PubMed  CAS  Google Scholar 

  21. Wang, T.N., Lu, L., Wang, J.Y., Xu, T.F., Li, J., and Zhao, M., Process Biochem., 2015, vol. 50, pp. 97–103. https://doi.org/10.1016/j.procbio.2014.10.009

    Article  CAS  Google Scholar 

  22. Calik, P., Celik, E., and Oliver, S.G., New Biotechnol., 2009, vol. 25 (suppl.), p. S60. https://doi.org/10.1016/j.nbt.2009.06.286

    Article  Google Scholar 

  23. Chen, L., Mohsin, A., Chu, J., Zhang, Y., Liu, Y., and Guo, M., Biotechnol. Bioproc. E, 2017, vol. 22, pp. 767–773. https://doi.org/10.1007/s12257-017-0011-9

    Article  CAS  Google Scholar 

  24. Prabhu, A.A., Veeranki, V.D., and Dsilva, S.J., Process Biochem., 2016, vol. 51, pp. 709–718. https://doi.org/10.1016/j.procbio.2016.02.007

    Article  CAS  Google Scholar 

  25. Zhao, X.H., Wang, W., Wang, F.Q., and Wei, D.Z., Bioresour. Technol., 2012, vol. 110, pp. 539–545. https://doi.org/10.1016/j.biortech.2011.12.086

    Article  PubMed  CAS  Google Scholar 

  26. Wang, P., Zhang, J., Sun, Z., Chen, Y., and Liu, J.N., Protein Expr. Purif., 2000, vol. 20, pp. 179–185. https://doi.org/10.1006/prep.2000.1310

    Article  PubMed  CAS  Google Scholar 

  27. Kazenwadel, C., Klebensberger, J., Richter, S., Pfannstiel, J., Gerken, U., Pickel, B., et al., Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 7215–7227. https://doi.org/10.1007/s00253-012-4579-x

    Article  PubMed  CAS  Google Scholar 

  28. Tang, S.J., Shaw, J.F., Sun, K.H., Sun, G.H., Chang, T.Y., Lin, C.K., et al., Arch. Biochem. Biophys., 2001, vol. 387, pp. 93–98. https://doi.org/10.1006/abbi.2000.2235

    Article  PubMed  CAS  Google Scholar 

  29. Deesukon, W., Nishimura, Y., Sakamoto, T., and Sukhumsirichart, W., Mol. Biotechnol., 2013, vol. 54, pp. 37–46. https://doi.org/10.1007/s12033-012-9541-8

    Article  PubMed  CAS  Google Scholar 

  30. Fan, G., Katrolia, P., Jia, H., Yang, S., Yan, Q., and Jiang, Z., Biotechnol. Lett., 2012, vol. 34, pp. 2043–2048. https://doi.org/10.1007/s10529-012-0995-3

    Article  PubMed  CAS  Google Scholar 

  31. Chakdar, H., Kumar, M., Pandiyan, K., Singh, A., Nanjappan, K., Kashyap, P.L., et al., 3 Biotech., 2016, vol. 6, article 150. https://doi.org/10.1007/s13205-016-0457-z

  32. Daas, M.J.A., Martínez, P.M., van de Weijer, A.H.P., van der Oost, J., de Vos, W.M., Kabel, M.A., et al., BMC Biotechnol., 2017, vol. 17, p. 44. https://doi.org/10.1186/s12896-017-0357-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. McCafferty, K.W., Bedford, M.R., Kerr, B.J., and Dozier, W.A., Poult. Sci., 2019, vol. 98, pp. 2866–2879. https://doi.org/10.3382/ps/pez032

    Article  PubMed  CAS  Google Scholar 

  34. Yu, X., Han, J., Li, H., Zhang, Y., and Feng, J., J. Anim. Sci. Biotechnol., 2018, vol. 9, p. 73. https://doi.org/10.1186/s40104-018-0289-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Raza, A., Bashir, S., and Tabassum, R., Heliyon., 2019, vol. 5, p. e01437. https://doi.org/10.1016/j.heliyon.2019.e01437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was funded by the Department of Xinjiang Science and Technology, China (no. ZYYD2023B09).

Author information

Authors and Affiliations

Authors

Contributions

T.T. Fu and L. Wang are co-first authors with equal contributions.

Corresponding author

Correspondence to Y. Chen.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T.T., Wang, L., Li, W.J. et al. Overexpression and Characterization of Endo-1,4-β-xylanase from Fibrobacter succinogenes in Pichia pastoris. Appl Biochem Microbiol 59, 900–908 (2023). https://doi.org/10.1134/S0003683823060030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823060030

Keywords:

Navigation