Skip to main content
Log in

Bacterial Violacein: Properties, Biosynthesis and Application Prospects

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

This review discusses the properties of violacein, a chromogenic secondary metabolite of bacteria with a wide range of biological activity, as well as the issues of its microbial synthesis and prospects for application. Violacein-synthesizing bacteria have been isolated from various sources, including the rhizosphere of cultivated plants, soils, marshes, sea coasts, ponds, and glacier melt waters. The study of the antibacterial, antimycotic, insecticidal, and antitumor properties of violacein makes it an extremely promising biologically active compound and causes a steadily increasing interest in both the compound itself and in the group of bacteria that produce it, in terms of the development of new drugs and veterinary drugs, as well as plant protection products. The purpose of this review is to attempt to summarize the considerable amount of data on this compound, especially regarding its antimicrobial and anticancer properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hoshino, T., Appl. Microbiol. Biotechnol., 2011, vol. 91, no. 6, pp. P. 1463–1475.

  2. Moss, M.O., Ryall, C., and Logan, N.A., J. Gen. Microbiol., 1978, vol. 105, no. 1, pp. 11–21.

    Article  CAS  Google Scholar 

  3. Duran, N.D. and Menck, C.F.M., Crit. Rev. Microbiol., 2001, vol. 27, no. 3, pp. 201–222.

    Article  CAS  PubMed  Google Scholar 

  4. Jude, B.A., Tanner, J., Koko, T., and McLaughlin, E.C., Abstr. Papers Am. Chem. Soc., 2012, vol. 244, p. 1155.

    Google Scholar 

  5. Lu, Y., Wang, L., Xue, Y., and Chong, Z., Biochem. Eng. J., 2009, vol. 43, no. 2, pp. 135–141.

    Article  CAS  Google Scholar 

  6. Pantanella, F., Berlutti, F., Passariello, C., Sarli, S., Morea, C., and Schippa, S., J. Appl. Microbiol., 2007, vol. 102, no. 4, pp. 992–999.

    CAS  PubMed  Google Scholar 

  7. Hakvag, S., Fjærvik, E., Klinkenberg, G., Borgos, S.E.F., Josefsen, K.D., Ellingsen, T.E., and Zotchev, S.B., Mar. Drugs, 2009, vol. 7, no. 4, pp. 576–588.

    PubMed  PubMed Central  Google Scholar 

  8. Wang, H.S., Jiang, P.X., Lu, Y., Ruan, Z., Jiang, R., Xing, X.-H., Lou, K., and Wei, D., Biochem. Eng. J., 2009, vol. 44, nos. 2–3, pp. 119–124.

    Article  CAS  Google Scholar 

  9. Yang, L.H., Xiong, H., Lee, O.O., Qi, S.-H., and Qian, P.-Y., Lett. Appl. Microbiol., 2007, vol. 44, no. 6, pp. P. 625–630.

  10. Zhang, X. and Enomoto, K., Appl. Microbiol. Biotechnol., 2011, vol. 90, no. 6, pp. 1963–1971.

    Article  CAS  PubMed  Google Scholar 

  11. Mccarthy, S.A., Johnson, R.M., Kakimoto, D., and Sakata, T., Bull. Jpn. Soc. Sci. Fish., vol. 51, no. 7, pp. 1115–1121.

  12. Carvalho, J.C., Cardoso, L.C., Ghiggi, V., Woiciechowski, A.L., Souza Vandenber, and Soccol., C.R., Microbial pigments, in Biotransformation of Waste Biomass into High Value Biochemicals, Brar, S.K., Dillon, G.S., and Soccol., C.R., Eds., New York: Springer, 2014, pp. 3–97. https://doi.org/10.1007/978-1-4614-8005-1_4

  13. Adzzie-Shazleen, A., Mawang, Ch-I., and Sazaly, A., Nat. Prod. Commun., 2018, vol. 13, no. 12. https://doi.org/10.1177/1934578X1801301240

  14. Choi, S.Y., Yoon, K.-Hye, Lee, J., and Mitchell, R.J., BioMed. Res. Int., 2015, vol. 2015, pp. 1–8. https://doi.org/10.1155/2015/465056

    Article  CAS  Google Scholar 

  15. August, P.R., Grossman, T.H., Minor, C., Draper, M.P., Macneil, I.A., Pemberton, J.M., et al., J. Mol. Microbiol. Biotechnol., 2000, vol. 2, no. 4, pp. 513–519.

    CAS  PubMed  Google Scholar 

  16. Pemberton, J.M., Vincent, K.M., and Penfold, R.J., Curr. Microbiol., 1991, vol. 22, pp. 355–358. https://doi.org/10.1007/BF02092154

    Article  CAS  Google Scholar 

  17. Ryan, K.S. and Drennan, C.L., Chem. Biol., 2009, vol. 16, no. 4, pp. 351–364. https://doi.org/10.1016/j.chembiol.2009.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kothari, V., Sharma, S., and Padia, D., Asian Pac. J. Trop. Med., 2017, vol. 10, no. 8, pp. 744–752. https://doi.org/10.1016/j.apjtm.2017.07.022

    Article  PubMed  Google Scholar 

  19. Stauff, D.L. and Bassler, B.L., J. Bacteriol., 2011, vol. 193, pp. 3871–3878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Devescovi, G., Kojic, M., Covaceuszach, S., Miguel, C., Williams, P., Bertani, I., Subramoni, S., and Venturi, V., Front. Microbiol., 2017, vol. 8, p. 349.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Inchagova, K.S., “Simbioz—Rossiya 2020". Sbornik statei XII Vserossiiskogo kongressa molodykh uchenykh-biologov s mezhdunarodnym uchastiem (“Symbiosis—Russia 2020,” P, pp. roceedings of the XII All-Russian Congress of Young Biologists with International Participation), Perm: Perm. Gos. Nats. Issled. Univ., 2020, pp. 106–108.

  22. Füller, J.J., Ropke, R., Krausze, J., Rennhack, K.E., Nils, P.D., Blankenfeldt, W., Schulz, S., Jahn, D., and Moser, J., J. Biol. Chem., 2016, vol. 291, no. 38, pp. 20068–20084. https://doi.org/10.1074/jbc.M116.741561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shinoda, K., Hasegawa, T., Sato, H., Shinozaki, M., Kuramoto, H., Takamiya, Y., Sato, T., Nikaidou, N., Watanabe, T., and Hoshino, T., Chem. Commun. (Camb.), 2007, vol. 28, no. 40, pp. 4140–4142. https://doi.org/10.1039/b705358d

    Article  CAS  Google Scholar 

  24. Balibar, C.J. and Walsh, C.T., Biochemistry, 2006, vol. 45, pp. 15444–15457.

    Article  CAS  PubMed  Google Scholar 

  25. Kameya, M., Onaka, H., and Asano, Y., Anal. Biochem., 2013, vol. 438, pp. 124–132.

    Article  CAS  PubMed  Google Scholar 

  26. Sanchez, C., Brana, A.F., Mendez, C., and Salas, J.A., ChemBioChem, 2006, vol. 7, no. 8, pp. 1231–1240. https://doi.org/10.1002/cbic.200600029

    Article  CAS  PubMed  Google Scholar 

  27. Antonio, R.V. and Creczynski-Pasa, T.B., Genet. Mol. Res., 2004, vol. 3, no. 1, pp. 85–91.

    CAS  PubMed  Google Scholar 

  28. Matz, C., Webb, J.S., Schupp, P.J., Phang, S.Y., Penesyan, A., Egan, S., Steinberg, P., and Kjelleberg, S., PLoS One, 2008, vol. 3, no. 7, pp. 2744–2751. https://doi.org/10.1371

    Article  Google Scholar 

  29. Brazilian National Genome Project Consortium, Haselkorn, R., Ed., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 20, pp. 11660–11665. https://doi.org/10.1073/pnas.1832124100

  30. Nakamura, Y., Sawada, T., Morita, Y., and Tamiya, E., Biochem. Engin. J, 2002, vol. 12, no. 1, pp. 79–86. https://doi.org/10.1016/s1369-703x(02)00079-7

    Article  CAS  Google Scholar 

  31. Duran, N. and Menck, C.F.M., Crit. Rev. Microbiol., 2001, vol. 27, no. 3, pp. 201–222. https://doi.org/10.1080/20014091096747

    Article  CAS  PubMed  Google Scholar 

  32. Duran, N., Erazo, S., and Campos, V., Anais da Academia Brasileira de Ciencias (Rio De Janeiro), 1983, pp. 231–234.

  33. Nakamura, Y., Asada, C., and Sawada, T., Biotechnol. Bioproc. Eng., 2003, vol. 8, no. 1, pp. 37–40. https://doi.org/10.1007/BF02932896

    Article  CAS  Google Scholar 

  34. Pauer, H., Hardoim, C.C.P., Teixeira, F.L., Miranda, K.R., Barbirato, D.D.S., Carvalho, D.P.D.L., et al., PLoS One, 2018, vol. 13, no. 9, p. 203748. https://doi.org/10.1371

    Article  Google Scholar 

  35. Baricz, A., Teban, A., Chiriac, C.M., Szekeres, E., Farkas, A., Nica, M., et al., Sci. Rep., 2018, vol. 8, pp. 15272–15283. https://doi.org/10.1038/s41598-018-33691-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi, S.Y., Lim, S., Yoon, Kh., Lee, J.I., and Mitchell, R.J., J. Biol. Eng., 2021, vol. 15, no. 10. https://doi.org/10.1186/s13036-021-00262-9

  37. Nakamura, Y., Sawada, T., Morita, Y., and Tamiya, E., Biochem. Eng. J., 2002, vol. 12, no. 1, pp. 79–86. https://doi.org/10.1016/s1369-703x(02)00079-7.-40

    Article  CAS  Google Scholar 

  38. Cazoto, L., Martins, D., Ribeiro, M., Garcia, M., Nelson, D., and Gerson, N., J. Antibiot., 2011, vol. 64, no. 5, pp. 395–397. https://doi.org/10.1038/ja.2011.13

    Article  CAS  Google Scholar 

  39. Subramaniam, S., Ravi, V., and Sivasubramanian, A., Pharm. Biol., 2014, vol. 52, no. 1, pp. 86–90.

    Article  CAS  PubMed  Google Scholar 

  40. Choi, S.Y., Lim, S., Cho, G., Kwon, J., Mun, W., Im, H., and Mitchell, R.J., Environ. Microbiol., 2020, vol. 22, no. 2, pp. 705–713.

    Article  CAS  PubMed  Google Scholar 

  41. Batista, J.H., Leal, F.C., Fukuda, T.T.H., Diniz, J.A., Almeida, F., Pupo, M.T., and Silva, J.F.N., Environ. Microbiol., 2020, vol. 22, no. 6, pp. 1462–15033. https://doi.org/10.1111/1462-2920.15033

    Article  CAS  Google Scholar 

  42. Matz, C., Webb, J.S., Schupp, P.J., Phang, S.Y., Penesyan, A., Egan, S., et al., PLoS One, 2008, vol. 3, no. 7, p. e2744. https://doi.org/10.1371/journal.pone.0002744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ballestriero, F., Daim, M., Penesyan, A., Nappi, J., Schleheck, D., Bazzicalupo, P., et al., PLoS One, 2014, vol. 9, no. 10, p. e109201. https://doi.org/10.1371/journal.pone.0109201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Silva, N.M., Spillman, N., Kayano, A.C.A.V., Cassiano, G.C., Vasconcelos, A.A., et al., ACS Infect. Dis., 2021, vol. 7, no. 4, pp. 759–776.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Durán, M., Ponezi, A.N., Faljoni-Alario, A., Teixeira, M.F.S., Justo, G.Z., and Durán, N., Med. Chem. Res., 2012, vol. 21, pp. 1524–1532. https://doi.org/10.1007/s00044-011-9654-9

    Article  CAS  Google Scholar 

  46. Pauer, H., Hardoim, C.C.P., Teixeira, F.L., Miranda, K.R., Barbirato, D.D.S., Carvalho, D.P.D., et al., PLoS One, 2018, vol. 13, no. 9, p. e0203748. https://doi.org/10.1371/journal.pone.0203748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Antonisamy, P. and Ignacimuthu, S., Phytomedicine, 2010, vol. 17, pp. 300–304.

    Article  CAS  PubMed  Google Scholar 

  48. Verinaud, L., Lopes, S.C.P., Prado, I.C.N., Zanucoli, F., Alves da Costa, T., Di Gangi, R., et al., PLoS One, 2015, vol. 10, no. 5, p. e0125409. https://doi.org/10.1371/journal.pone.0125409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alshatwi, A.A., Subash-Babu, P., and Antonisamy, P., Exp. Toxicol. Pathol., 2016, vol. 68, pp. 89–97. https://doi.org/10.1016/j.etp.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  50. Ferreira, C.V., Bos, C.L., Versteeg, H.H., Justo, G.Z., Duran, N., and Peppelenbosch, M.P., Blood, 2004, vol. 104, no. 5, pp. 1459–1464. https://doi.org/10.1182/blood-2004-02-0594

    Article  CAS  PubMed  Google Scholar 

  51. Venegas, F.A., Kollisch, G., Kerstin, M., Wibke, D., Kaufmann, A., and Bauer, S., Sci. Rep., 2019, vol. 9, no. 1, pp. 13661–13678. https://doi.org/10.1038/s41598-019-50038-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leal, A.M.D.S., de Queiroz, J.D.F., de Medeiros, S.R.B., Lima, T.K.D.S., and Agnez-lima, L.F., BMC Microbiol., 2015, vol. 15, pp. 115–122. https://doi.org/10.1186/s12866-015-0452-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goncalves, P.R., Rocha-Brito, K.J.P., Fernandes, M.R.N., Abrantes, J.L., Duran, N., and Ferreira-Halder, C.V., Tumor Biol., 2016, vol. 37, no. 10, pp. 14049–14058. https://doi.org/10.1007/s13277-016-5265-x

    Article  CAS  Google Scholar 

  54. Kim, Y.J., Yuk, N., Shin, H.J., and Jung, H.J., Int. J. Mol. Sci., 2021, vol. 22, pp. 10731–10745.https://doi.org/10.3390/ijms221910731

  55. Kodach, L.L., Bos, C.L., Duran, N., Peppelenbosch, M.P., Ferreira, C.V., and Hardwick, J.C., Carcinogenesis, 2006, vol. 27, no. 3, pp. 508–516. https://doi.org/10.1093/carcin/bgi307

    Article  CAS  PubMed  Google Scholar 

  56. de Carvalho, D.D., Costa, F.T., Duran, N., and Haun, M., Toxicol. In Vitro, 2006, vol. 20, no. 8, pp. 1514–1521. https://doi.org/10.1016/j.tiv.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  57. Melo, P.S., Justo, G.Z., De Azevedo, M.B.M., Duran, N., and Haun, M., Toxicology, 2003, vol. 186, no. 3, pp. 217–225. https://doi.org/10.1016/s0300-483x(02)00751-5

    Article  CAS  PubMed  Google Scholar 

  58. Mehta, T., Vercruysse, K., Johnson, T., Ejiofor, A., Myles, E., and Quincy, Q., Mol. Med. Rep., 2015, vol. 12, pp. 1443–1448. https://doi.org/10.3892/mmr.2015.3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Queiroz, K.C.S., Milani, R., Ruela-de-Sousa, R.R., Fuhler, G.M., Justo, G.Z., Zambuzzi, W.F., et al., PLoS One, 2012, vol. 7, no. 10, p. e45362. https://doi.org/10.1371/journal.pone.0045362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mendes, A.S., de Carvalho, J.E., Duarte, M.C.T., Duran, N., and Bruns, R.E., Biotechnol. Lett., 2001, vol. 23, no. 23, pp. 1963–1969. https://doi.org/10.1023/A:1013734315525

    Article  CAS  Google Scholar 

  61. Riveros, R., Haun, M., and Duran, N., Braz. J. Med. Biol. Res., 1989, vol. 22, no. 5, pp. 569–577.

    CAS  PubMed  Google Scholar 

  62. Wang, H.S., Jiang, P.X., Lu, Y., Ruan, Z., Jiang, R., Xing, Xin-H., et al., Biochem. Eng. J., 2009, vol. 44, nos 2–3, pp. 119–124.

    Article  CAS  Google Scholar 

  63. Aruldass, C.A., Masalamany, S.R.L., Venil, C.K., and Ahmad, W.A., Environ. Sci. Pollut. Res. Int., 2018, vol. 25, no. 6, pp. 5164–5180. https://doi.org/10.1007/s11356-017-8855-2

    Article  CAS  PubMed  Google Scholar 

  64. Martyanov, S.V., Letarov, A.V., Ivanov, P.A., and Plakunov, V.K., Microbiology, 2018, vol. 87, no. 3, pp. 437–440.

    Article  CAS  Google Scholar 

  65. Baricz, A., Teban, A., Chiriac, C.M., Szekeres, E., Farkas, A., Nica, M., et al., Sci. Rep., vol. 8, no. 1, pp. 15272–15284. https://doi.org/10.1038/s41598-018-33691-6

  66. Tong, Y., Zhou, J., Zhang, L., and Xu, P., bioRxiv, 2019. https://doi.org/10.1101/687012

  67. Tong, Y., Zhou, J., Zhang, L., and Xu, P., ACS Synth. Biol., 2021, vol. 10, pp. 115–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fang, M.-Y., Zhang, C., Yang, S., Cui, J.-Yu., Jiang, P.-Xia., Lou, K., Wachi, Masaaki., and Xing, X.-H., Microb. Cell Fact., 2015, vol. 14, no. 1, pp. 8–20. https://doi.org/10.1186/s12934-015-0192-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chi, H., Wang, X., Shao, Y., Qin, Y., Deng, Z., Wang, L., and Chen, S., Synth. Sys. Biotechnol., 2019, vol. 4, pp. 25–33. https://doi.org/10.1016/j.synbio.2018.12.001

    Article  Google Scholar 

  70. Liu, W., Luo, Z., Wang, Y., Pham, N.T., Tuck, L., Pi, I.P., et al., Nat. Commun., 2018, vol. 9, no. 1, p. 1936.https://doi.org/10.1038/s41467-018-04254-0

  71. Lai H.-En., Obled, A.M.C., Chee, S.M., Morgan, R.M., Lynch, R., Sharma, S.V., et al., ACS Chem. Biol., 2021, vol. 16, no. 11, pp. 2116–2123. https://doi.org/10.1101/202523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jones, J.A., Vernacchio, V.R., Lachance, D.M., Lebovich, M., Fu, L., Shirke, A.N., et al., Sci. Rep., 2015, vol. 5, p. 11301. https://doi.org/10.1038/srep11301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jeschek, M., Gerngross, D., and Panke, S., Nat. Commun., 2016, vol. 7, p. 11163. https://doi.org/10.1038/ncomms11163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zalatan, J.G., Lee, M.E., Almeida, R., Gilbert, L.A., Whitehead, E.H., La Russa, M., et al., Cell, 2015, vol. 160, nos. 1–2, pp. 339–350. https://doi.org/10.1016/j.cell.2014.11.052

    Article  CAS  PubMed  Google Scholar 

  75. Zhou, S., Wu, Y., Xie, Ze-X., Jia, Bin., and Yuan, Y.-J., Chem. Soc. Rev., 2021. https://doi.org/10.1039/d1cs00722j

  76. Wu, X., Kazakov, A.E., Gushgari-Doyle, S., Yu, X., Trotter, V., Stuart, R.K., and Chakraborty, R., Microbiol. Spectr., 2021, vol. 9, no. 3, p. e01414-21.https://doi.org/10.1128/Spectrum.01414-21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Solyanikova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyakhovchenko, N.S., Travkin, V.M., Senchenkov, V.Y. et al. Bacterial Violacein: Properties, Biosynthesis and Application Prospects. Appl Biochem Microbiol 58, 692–700 (2022). https://doi.org/10.1134/S0003683822060072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822060072

Keywords:

Navigation