Skip to main content
Log in

Stimulation of the Protective Mechanisms of Solanum tuberosum by the Bacteria Bacillus subtilis and Chitooligosaccharides upon Infection with Phytophthora infestans

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The joint effect of Bacillus subtilis 26D endophytic bacteria and chitooligosaccharides (COSs) on the resistance of potato plants (Solanum tuberosum L.) to the late blight causative agent Phytophthora infestans (Mont.) De Bary was studied. A twofold decrease in the area of late-blight lesions on potato leaves was revealed during the joint presowing treatment of minitubers with B. subtilis bacteria (108 cells/mL) with COSs (1 mg/L). Treatment with COSs was found to have similar protective effect on potato plants, but this was not observed with the use of only bacteria. The mechanisms of increased potato-plant resistance to P. infestans were associated with the activation of catalase, peroxidase, and hydrolases (amylase and protease) inhibitors, the accumulation of hydrogen peroxide, and transcripts of genes encoding PR proteins: amylase inhibitor, basic protective protein (PR-1), chitinase (PR-3), protease inhibitor (PR-6), peroxidase (PR-9). The revealed activation of the gene expression of the main antimicrobial protein PR-1 (a marker of the development of systemic acquired resistance) and PR-6 (a marker of the development of induced systemic resistance) under the influence of combined treatment with B. subtilis and COSs indicates that the development of protective reactions in potato plants to the late blight pathogen in this case occurs synergistically, with the participation of various signaling pathways, in which B. subtilis prime protective genes, and COSs act as a trigger for their expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Zalila-Kolsi, I., Ben Mahmoud, A., Hacina, A., Sellami, S., et al., Microbiol. Res., 2016, vol. 192, pp. 148–158.

    Article  PubMed  Google Scholar 

  2. Burkhanova, G.F., Veselova, S.V., Sorokan’, A.V., Blagova, D.K., Nuzhnaya, T.V., and Maksimov, I.V., Appl. Biochem. Microbiol., 2017, vol. 53, no. 3, pp. 346–352. https://doi.org/10.18699/VJ19.561

    Article  CAS  Google Scholar 

  3. Verma, P., Yadav, A.N., Kumar, V., Singh, D.P., and Saxena, A.K., in Plant–Microbe Interactions in Agro-Ecological Perspectives, Singh, D.P., Singh, H.B., and Prabha, R., Eds., Singapore: Springer, 2017, vol. 2, pp. 543–580.

    Google Scholar 

  4. Berg, G., Appl. Microbiol. Biotehnol., 2009, vol. 84, pp. 11–18. https://doi.org/10.1007/s00253-009-2092-7

    Article  CAS  Google Scholar 

  5. Yarullina, L.G., Kasimova, R.I., Kuluev, B.R., Surina, O.B., Yarullina, L.M., and Ibragimov, R.I., Agricult. Sci., 2014, vol. 5, pp. 906–912. https://doi.org/10.4236/as.2014.510098

    Article  Google Scholar 

  6. Pavlyushin, V.A., Tyuterev, S.L., Popova, E.V., Novikova, I.I., Bykova, G.A., and Domnina, N.S., Biotekhnologiya, 2010, no. 4, pp. 69–80.

  7. Krasnobaeva, I.L., Kovalenko, N.M., and Popova, E.V., Vestn. Zashchity Rast., 2020, vol. 103, no. 4, pp. 233–240.

    Google Scholar 

  8. Yin, H., Li, Y., Zhang, H.Y., Wang, W.X., Lu, H., et al., Int. J. Plant Sci., 2013, vol. 174, no. 4, pp. 722–732. https://doi.org/10.1086/669721

    Article  CAS  Google Scholar 

  9. Rush, T.A., Puech-Pages, V., Bascaules, A., et al., Nat. Commun., 2020, vol. 11, p. 3897. https://doi.org/10.1038/s41467-020-17615-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawano, T., Sahashi, N., Takahashi, K., Uozumi, N., and Muto, S., Plant Cell Physiol., 1998, vol. 39, no. 7, pp. 721–730. https://doi.org/10.1093/oxfordjournals.pcp.a029426

    Article  CAS  Google Scholar 

  11. Wang, X.Q., Zhao, D.L., Shen, L.L., Jing, C.L., and Zhang, C.S., in Role of Rhizospheric Microbes in Soil, Meena, V.S., Ed., Singapore: Springer, 2018, vol. 1, pp. 225–250. https://doi.org/10.1007/978-981-10-8402-7-9

    Book  Google Scholar 

  12. Zhuravleva, N.V. and Luk’yanov, P.A., Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2004, vol. 3, pp. 76–86.

    Google Scholar 

  13. Yanchevskaya, T.G., Grits, A.N., Kolomiets, E.I., Romanovskaya, T.V., Yarullina, L.G., Ibragimov, R.I., and Tsvetkov, V.O., Appl. Biochem. Microbiol., 2018, vol. 54, no. 3, pp. 324–330. https://doi.org/10.1134/S0003683818030158

    Article  CAS  Google Scholar 

  14. Yarullina, L.G., Sorokan’, A.V., Burkhanova, G.F., Cherepanova, E.A., and Maksimov, I.V., Appl. Biochem. Microbiol., 2018, vol. 54, no. 5, pp. 528–534. https://doi.org/10.1134/S0003683818050174

    Article  CAS  Google Scholar 

  15. Maksimov, V.I. and Smirnova, Yu.V., Biotekhnologiya, 1993, no. 10, pp. 26–30.

  16. Jiang, Z.Y., Woollard, A.C.S., and Wolff, S.P., FEBS Lett., 1990, vol. 268, pp. 69–71.

    Article  CAS  PubMed  Google Scholar 

  17. Hadwan, M.H. and Abed, H.N., Data Brief, 2016, vol. 6, pp. 194–199. https://doi.org/10.1016/j.dib.2015.12.012

    Article  PubMed  Google Scholar 

  18. Fornera, S. and Walde, P., Anal. Biochem., 2010, vol. 407, no. 2, pp. 293–295. https://doi.org/10.1016/j.ab.2010.07.034

    Article  CAS  PubMed  Google Scholar 

  19. Tsvetkov, V.O., Shpirnaya, I.A., Maksutova, V.O., and Ibragimov, R.I., Izv. Ufimsk. Nauchn. Tsentra Ross. Akad. Nauk, 2018, nos. 3–5, pp. 81− 85.

  20. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  21. Rajendran, L. and Samiyappan, R., Plant Pathol. J., 2008, vol. 7, no. 1, pp. 1–12. https://doi.org/10.3923/ppj.2008.1.12

    Article  CAS  Google Scholar 

  22. Abdel-Kader, M.M., El-Mougy, N.S., Aly, M.D., and Lashin, S.M., Int. J. Agric. For., 2012, vol. 2, no. 2, pp. 8–48. https://doi.org/10.5923/j.ijaf.20120202.07

    Article  Google Scholar 

  23. Bolwell, G.P., Bindschedler, L.V., Blee, K.A., Butt, V.S., Davies, D.R., Gardner, S.L., Gerrish, C., and Minibayeva, F., J. Exp. Bot., 2002, vol. 53, no. 372, pp. 1367–1376. PMID: 11997382

    CAS  PubMed  Google Scholar 

  24. Pfannschmidt, T., Brautigam, K., Wagner, R., Dietzel, L., and Schroter, Y., Ann. Bot., 2009, vol. 103, pp. 599–607. https://doi.org/10.1093/aob/mcn081

    Article  CAS  PubMed  Google Scholar 

  25. White, J.F. and Torres, M.S., Physiol. Plant., 2010, vol. 138, pp. 440–446. https://doi.org/10.1111/j.1399-3054.2009.01332.x

    Article  CAS  PubMed  Google Scholar 

  26. Galvez-Valdivieso, G., Fryer, M.J., Lawson, T., Slattery, K., Truman, W., Smirnoff, N., et al., Plant Cell, 2009, vol. 21, pp. 2143–2162. https://doi.org/10.1105/tpc.108.061507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bakalova, S., Nikolova, A., and Wedera, D., J. Plant Physiol., 2004, vol. 30, pp. 64–77. https://doi.org/10.1556/AAgr.56.2008.2.1

    Article  CAS  Google Scholar 

  28. Luna, C.M., Pastori, G.M., Driscoll, S., Groten, K., Bernard, S., and Foyer, C.H., J. Exp. Bot., 2005, vol. 56, pp. 417–432. https://doi.org/10.1093/jxb/eri039

    Article  CAS  PubMed  Google Scholar 

  29. Minibayeva, F., Kolesnikov, O., Chasov, A., Beckett, R.P., Luthje, S., Vylegzhanina, N., Buck, F., and Bottger, M., Plant, Cell Environ., 2009, vol. 32, p. 497. https://doi.org/10.1111/j.1365-3040.2009.01944.x

    Article  CAS  Google Scholar 

  30. Maksimov, I.V., Sorokan’, A.V., Cherepanova, E.A., Surina, O.B., Troshina, N.B., and Yarullina, L.G., Russ. J. Plant Physiol., 2011, vol. 58, no. 2, pp. 299–306.

    Article  CAS  Google Scholar 

  31. Yarullina, L.G., Kasimova, R.I., Ibragimov, R.I., Akhatova, A.R., Umarov, I.A., and Maksimov, I.V., Appl. Biochem. Microbiol., 2016, vol. 52, no. 1, pp. 71–78. https://doi.org/10.1134/S0003683816010154

    Article  CAS  Google Scholar 

  32. Gappa-Adachi, R., Yano, K., Takeuchi, S., Morita, Y., and Uematsu, S., J. Gen. Plant Pathol., 2012, vol. 78, p. 39. https://doi.org/10.1007/s10327-011-0351-9

    Article  Google Scholar 

  33. Feng, T., Nyffenegger, C., Hojrup, P., Vidal-Melgosa, S., Yan, K., Ulrik, FangelJ., Meyer, A.S., and Kirpekar, F., Prt. Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 24, p. 10077. https://doi.org/10.1007/s00253-014-5877-2

    Article  CAS  Google Scholar 

  34. Wang, T., Liang, Y., Wu, M., Chen, Z., et al., Chin. J. Chem. Eng., 2015, vol. 23, no. 4, pp. 744–754. https://doi.org/10.1016/j.cjche.2014.05.020

  35. Gimenez-Ibanez, S. and Solano, R., Front. Plant Sci., 2013, vol. 4, no. 72. https://doi.org/10.3389/fpls.2013.00072

  36. Tret'yakova, O.M. and Evtushenkov, A.I., Tr. BGU, 2011, vol. 6, no. 1, pp. 163–167.

    Google Scholar 

  37. Vasyukova, N.I. and Ozeretskovskaya, O.L., Russ. J. Plant Physiol., 2009, vol. 56, no. 5 pp. 581–590.

    Article  CAS  Google Scholar 

  38. Yang, J.W., Yu, S.H., and Ryu, C.M., Plant Pathol. J., 2009, vol. 25, no. 4, pp. 389–399. https://doi.org/10.5423/PPJ.2009.25.4.389

    Article  Google Scholar 

  39. Valenzuela-Soto, J.H., Estrada-Hernandez, M.G., Laclette, E.I., and Delano-Frier, J.P., Planta, 2010, vol. 231, pp. 397–410. https://doi.org/10.1007/s00425-009-1061-9

    Article  CAS  PubMed  Google Scholar 

  40. Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Corne, M.J., Pieterse, C.M.J., et al., Trends Plant Sci., 2016, vol. 21, pp. 818–822. https://doi.org/10.1016/j.tplants.2016.07.009

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed on the equipment of the Biomics Center for Collective Use (Department of Biochemical Research and Nanobiotechnology of the Agidel Regional Center for Collective Use) and the Unique Scientific Installation Kodink.

Funding

The work was performed partially as a government task (state registration number AAAA-A21-121011990120-7), with the financial support of the Russian Foundation for Basic Research and the Belarusian Republican Foundation for Fundamental Research within the framework of scientific project no. 20-516-00005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Yarullina.

Ethics declarations

The authors declare that they have no conflict of interests. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarullina, L.G., Burkhanova, G.F., Tsvetkov, V.O. et al. Stimulation of the Protective Mechanisms of Solanum tuberosum by the Bacteria Bacillus subtilis and Chitooligosaccharides upon Infection with Phytophthora infestans. Appl Biochem Microbiol 58, 166–174 (2022). https://doi.org/10.1134/S0003683822020168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822020168

Keywords:

Navigation