Skip to main content
Log in

Influence of Mono- and Oligosaccharides on cbh1 Gene Transcription in the Filamentous Fungus Penicillium verruculosum

  • PRODUCERS, BIOLOGY, SELECTION, AND GENETIC ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A method has been developed for the analysis of the induction of cbh1 gene transcription in the filamentous fungus Penicillium verruculosum after treatment with mono- and oligosaccharides. The method makes it possible to obtain mRNA, which encodes cellobiohydrolase 1 (CBH1), in an amount sufficient for RT-qPCR. Citrate, a compound that does not cause carbon catabolite repression, was used as a carbon source. It was shown for the first time that xylose, gentiobiose, and, mainly, cellobiose induce the expression of the cbh1 gene in P. verruculosum, while sophorose and a mixture of xylooligosaccharides with a degree of polymerization of 3–5 most likely serve as precursors of inducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Bischof, R.H., Ramoni, J., and Seiboth, B., Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei, Microb. Cell Fact., 2016, vol. 15, no. 1, p. 106. https://doi.org/10.1186/s12934-016-0507-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lubertozzi, D. and Keasling, J.D., Developing Aspergillus as a host for heterologous expression, Biotechnol. Adv., 2009, vol. 27, no. 1, pp. 53–75. https://doi.org/10.1016/j.biotechadv.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  3. Nevalainen, K.M., Te’o, V.S., and Bergquist, P.L., Heterologous protein expression in filamentous fungi, Trends Biotechnol., 2005, vol. 23, no. 9, pp. 468–474. https://doi.org/10.1016/j.tibtech.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  4. Rasmussen, G., Mikkelsen, J.M., Schulein, M., Shamkant, A., Patkar, F.H., Hjort, C.M., and Hastrup, S., A cellulose preparation comprising an endoglucanase enzyme, WO Patent 91/17243, 1991.

  5. Visser, H. Joosten, V., et al., RESEARCH: development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1, Ind. Biotechnol., 2011, vol. 7, no. 3, pp. 214–223. https://doi.org/10.1089/ind.2011.7.214

    Article  CAS  Google Scholar 

  6. Sinitsyn, A.P. and Rozhkova, A.M., Penicillium canescens host as the platform for development of a new recombinant strains producers of carbohydrases, in Microorganisms in Biorefineries, Steinbuchel, A., Ed., Microbiol. Monogr., Berlin: Springer, 2015, vol. 26, pp. 1–19. https://doi.org/10.1007/978-3-662-45209-7

  7. Sinitsyn, A.P., Sinitsyna, O.A., and Rozhkova, A.M., Obtaining of industrially important enzymes based on the expression system of the fungus Penicillium verruculosum, Biotekhnologiya, 2020, vol. 36, no. 6, pp. 17–34. https://doi.org/10.21519/0234-2758-2020-36-6-17-34

    Article  Google Scholar 

  8. Chulkin, A.M., Kislitsin, V.Yu., Zorov, I.N., Sinitsyn, A.P., and Rozhkova, A.M., Determination of copy number of target genes of carbohydrases in recombinant strains of the fungus Penicillium verruculosum, Biotekhnologiya, 2019, vol. 35, pp. 51–57. https://doi.org/10.21519/0234-2758-2019-35-5-51-57

    Article  Google Scholar 

  9. Gruben, B.S., Makela, M.R., Kowalczyk, J.E., Zhou, M., Benoit-Gelber, I., and De Vries, R.P., Expression-based clustering of CAZyme-encoding genes of Aspergillus niger, BMC Genomics, 2017, vol. 18, no. 1, p. 900. https://doi.org/10.1186/s12864-017-4164-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Vries, R.P., Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production, Appl. Microbiol. Biotechnol., 2003, vol. 61, no. 1, pp. 10–20. https://doi.org/10.1007/s00253-002-1171-9

    Article  CAS  PubMed  Google Scholar 

  11. Boase, N.A. and Kelly, J.M., A role for creD, a carbon catabolite repression gene from Aspergillus nidulans, in ubiquitination, Mol. Microbiol., 2004, vol. 53, no. 3, pp. 929–940. https://doi.org/10.1111/j.1365-2958.2004.04172.x

    Article  CAS  PubMed  Google Scholar 

  12. Fillinger, S., Panozzo, C., Mathieu, M., and Felenbok, B., The basal level of transcription of the alc genes in the ethanol regulon in Aspergillus nidulans is controlled both by the specific transactivator AlcR and the general carbon catabolite repressor CreA, FEBS Lett., 1995, vol. 368, no. 3, pp. 547–550. https://doi.org/10.1016/0014-5793(95)00736-s

  13. Toth-Petroczy, A., Oldfield, C.J., Simon, I., Takagi, Y., Dunker, A.K., Uversky, V.N., and Fuxreiter, M., Malleable machines in transcription regulation: the mediator complex, PLoS Comput. Biol., 2008, vol. 4, no. 12. e1000243. https://doi.org/10.1371/journal.pcbi.1000243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Peij, N.N., Visser, J., and de Graaff, L.H., Isolation and analysis of xlnR, encoding a transcriptional activator coordinating xylanolytic expression in Aspergillus niger, Mol. Microbiol., 1998, vol. 27, no. 1, pp. 131–142. https://doi.org/10.1046/j.1365-2958.1998.00666.x

    Article  CAS  PubMed  Google Scholar 

  15. Noguchi, Y., Sano, M., Kanamaru, K., Ko, T., Takeuchi, M., Kato, M., and Kobayashi, T., Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae, Appl. Microbiol. Biotechnol., 2009, vol. 85, no. 1, pp. 141–154. https://doi.org/10.1007/s00253-009-2236-9

    Article  CAS  PubMed  Google Scholar 

  16. Stricker, A.R., Mach, R.L., and de Graaff, L.H., Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei), Appl. Microbiol. Biotechnol., 2008, vol. 78, no. 2, pp. 211–220. https://doi.org/10.1007/s00253-007-1322-0

    Article  CAS  PubMed  Google Scholar 

  17. Coradetti, S.T., Craig, J.P., Xiong, Y., Shock, T., Tian, C., and Glass, N.L., Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 19, pp. 7397–7402. https://doi.org/10.1073/pnas.1200785109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Klaubauf, S. Narang, H.M., et al., Similar is not the same: differences in the function of the (hemi-) cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi, Fungal Genet. Biol., 2014, vol. 72, pp. 73–81. https://doi.org/10.1016/j.fgb.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  19. Huberman, L.B., Liu, J., Qin, L., and Glass, L., Regulation of the lignocellulolytic response in filamentous fungi Fungal Biol. Rev., 2016, vol. 30, no. 3, pp. 101–111. https://doi.org/10.1016/j.fbr.2016.06.001

    Article  Google Scholar 

  20. Mach-Aigner, A.R., Omony, J., Jovanovic, B., van Boxtel, A.J., and de Graaff, L.H., D-xylose concentration-dependent hydrolase expression profiles and the function of CreA and XlnR in Aspergillus niger, Appl. Environ. Microbiol., 2012, vol. 78, no. 9, pp. 3145–3155. https://doi.org/10.1128/AEM.07772-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurasawa, T., Yachi, M., Suto, M., Kamagata, Y., Takao, S., and Tomita, F., Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum, Appl. Environ. Microbiol., 1992, vol. 58, no. 1, pp. 106–110. https://doi.org/10.1128/AEM.58.1.106-110.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sternberg, D. and Mandels, G.R., Induction of cellulolytic enzymes in Trichoderma reesei by sophorose, J. Bacteriol., 1979, vol. 139, no. 3, pp. 761–769. https://doi.org/10.1128/JB.139.3.761-769.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaminskyj, S.G., Fundamentals of growth, storage, genetics and microscopy of Aspergillus nidulans, Fungal Genet. Rep., 2001, vol. 48, no. 1, pp. 25–31. https://doi.org/10.4148/1941-4765.1175

    Article  Google Scholar 

  24. Bio-Gel P Polyacrylamide Gel User Manual, Bio-Rad Laboratories, 2000. Alfred Nobel Dr., Hercules, CA 94547.

  25. COSMOSIL Sugar-D. Nacalai Tesque, INC. Nijo Karasuma, Nakagyo-ku, Kyoto 604-0855, Japan.

  26. Chulkin, A.M., Loginov, D.S., Vavilova, E.A., Abyanova, A.R., Zorov, I.N., Kurzeev, S.A., Koroleva, O.V., and Benevolenskii, S.V., Enzymological properties of endo-(1-4)-beta-glucanase Eg12p of Penicillium canescens and characteristics of structural gene egl2, Biochemistry (Moscow), 2009, vol. 74, pp. 655–662. https://doi.org/10.1134/s0006297909060108

    Article  CAS  PubMed  Google Scholar 

  27. Delabona, PdaS., Lima, D.J., Robl, D., Rabelo, S.C., Farinas, C.S., and Pradella, J.G., Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates, J. Ind. Microbiol. Biotechnol., 2016, vol. 43, no. 5, pp. 617–626. https://doi.org/10.1007/s10295-016-1744-8

    Article  CAS  Google Scholar 

  28. Chudzicka-Ormaniec, P., Macios, M., Koper, M., Weedall, G.D., Caddick, M.X., Weglenski, P., and Dzikowska, A., The role of the GATA transcription factor AreB in regulation of nitrogen and carbon metabolism in Aspergillus nidulans, FEMS Microbiol. Lett., 2019, vol. 366, no. 6, fnz066. https://doi.org/10.1093/femsle/fnz066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun, J., Tian, C., Diamond, S., and Glass, N.L., Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa, Eukaryot. Cell, 2012, vol. 11, no. 4, pp. 482–493. https://doi.org/10.1128/EC.05327-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, Z., Yao, G., Wu, R., et al., Synergistic and dosecontrolled regulation of cellulase gene expression in Penicillium oxalicum, PLoS Genet., 2015, vol. 11, no. 9. e1005509. https://doi.org/10.1371/journal.pgen.1005509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allen, A.L. and Mortensen, R.E., Production of cellulose from Trichoderma reesei in fedbatch fermentation from soluble carbon sources, Biotechnol. Bioeng., 1981, vol. 23, no. 11, pp. 2641–2645. https://doi.org/10.1002/bit.260231119

    Article  CAS  Google Scholar 

  32. Hrmová, M., Biely, P., and Vršanská, M., Specificity of cellulase and β-xylanase induction in Trichoderma reesei QM 9414, Arch. Microbiol., 1986, vol. 144, pp. 307–311. https://doi.org/10.1007/BF00410968

    Article  Google Scholar 

  33. Ilmen, M., Saloheimo, A., Onnela, M.L., and Penttila, M.E., Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei, Appl. Environ. Microbiol., 1997, vol. 63, no. 4, pp. 1298–1306. https://doi.org/10.1128/AEM.63.4.1298-1306.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Texier, H., Dumon, C., Neugnot-Roux, V., Maestracci, M., and O’Donohue, M.J., Redefining XynA from Penicillium funiculosum IMI 378536 as a GH7 cellobiohydrolase, J. Ind. Microbiol. Biotechnol., 2012, vol. 39, no. 11, pp. 1569–1576. https://doi.org/10.1007/s10295-012-1166-1

    Article  CAS  PubMed  Google Scholar 

  35. Morozova, V.V., Gusakov, A.V., Andrianov, R.M., Pravilnikov, A.G., Osipov, D.O., and Sinitsyn, A.P., Cellulases of Penicillium verruculosum, Biotechnol. J., 2010, vol. 5, no. 8, pp. 871–880. https://doi.org/10.1002/biot.201000050

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no.18-29-07070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Rozhkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors outside the scope of people’s normal professional activities.

Additional information

Translated by I. Gordon

Abbreviations: CBH1—cellobiohydrolase 1; CF—culture fluid; COS—cellooligosaccharides; EDTA—ethylenediaminetetraacetate; HPLC—high-performance liquid chromatography; MCC—microcrystalline cellulose; MCC-AO—active orange-stained MCC; RT-qPCR—reverse transcription quantitative real time polymerase chain reaction; SDS—sodium dodecyl sulfate; XOS—xylooligosaccharide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislitsin, V.Y., Chulkin, A.M., Zorov, I.N. et al. Influence of Mono- and Oligosaccharides on cbh1 Gene Transcription in the Filamentous Fungus Penicillium verruculosum. Appl Biochem Microbiol 57, 925–932 (2021). https://doi.org/10.1134/S0003683821090040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821090040

Keywords:

Navigation