Skip to main content
Log in

Alternative Cefazolin Synthesis with a Cephalosporin-Acid Synthetase

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Two pathways of combined chemical and biocatalytic synthesis of the antibiotic cefazolin (CEZ) from 7-amino-cephalosporanic acid (7-ACA) with the immobilized recombinant cephalosporin-acid synthetase as the biocatalyst are compared. The first pathway involved chemical substitution with 2-mercapto-5-methylthiadiazole to modify the 3-acetoxy group in 7-ACA with subsequent biocatalytic acylation of the amino group of the product, 7-amino-3-[2-methyl-1,3,4-thiadiazol-5-yl)-thiomethyl]-3-cephem-4-carboxylic acid (TDA), with the methyl ester of 1(Н)-tetrazolylacetic acid. An alternative pathway involved biocatalytic acylation of the 7-ACA amino group to form an intermediate (S-p CEZ) that was chemically transformed into CEZ at the next step without isolation from the reaction mix. Analysis and optimization of each of the biocatalytic processes showed that 7-ACA acylation had a number of important advantages over TDA acylation with respect to the process yield, final concentration of the product in the reaction mix, and the tolerance of the process conditions with respect to enzyme activity and stability. Given the obvious environmental advantages of the process of chemical S-p CEZ transformation into CEZ over the process of TDA production from 7-ACA, we conclude that the second pathway of combined chemical and biocatalytic CEZ synthesis is preferable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Nys, P.S., Kurochkina, V.B., Sklyarenko, A.V., and Veinberg, G.A., Antibiot. Khimioter., 2000, vol. 45, no. 11, pp. 36–42.

    CAS  PubMed  Google Scholar 

  2. Sklyarenko, A.V., Eldarov, M.A., Kurochkina, V.B., and Yarotsky, S.V., Appl. Biochem. Microbiol., 2015, vol. 51, no. 6, pp. 627–640.

    Article  CAS  Google Scholar 

  3. Wang, Lu, Sklyarenko, A.V., Li, Duanhua Sidorenko, A.I., Zhao, Chen., Li, Jinjun., and Yarotsky, S.V., Bioprocess Biosyst. Eng., 2018, vol. 41, no. 12, pp. 1851–1867.

    Article  CAS  Google Scholar 

  4. US Patent no. 5387679, 1995.

  5. Saikawa, I., Takano, S., Momonoi, K., Takakura, I., Tanaka, K., and Kutani, C., Chem. Pharm. Bull., 1985, vol. 33, no. 12, pp. 5534–5538.

    Article  CAS  Google Scholar 

  6. Durckheimer, W., Blumbach, J., Lattrel, R., and Scheunemann, K.H., Angew. Chem., 1985, vol. 24, no. 3, pp. 180–202.

    Article  Google Scholar 

  7. Fernandez-Lafuente, R., Guisan, J.M., Pregnolato, M., and Terreni, M., Tetrahedron Lett., 1997, vol. 38, no. 26, pp. 4693–4696.

    Article  CAS  Google Scholar 

  8. Elander, R.P., Appl. Microbiol. Biotechnol., 2003, vol. 61, nos. 5–6, pp. 385–392.

    Article  CAS  Google Scholar 

  9. Barber, M.S., Giesecke, U., Reichert, A., and Minas, W., Adv. Biochem. Eng. Biotechnol., 2004, vol. 88, pp. 179–215.

    CAS  PubMed  Google Scholar 

  10. Schmidt, F.-R., The Mycota X. Industrial Applications, Esser, K. and Hofrichter, M., Berlin: Springer-Verlag, 2010, vol. 5, pp. 101–121.

  11. Volpato, G., Rodrigues, R.C., and Fernandez-Lafuente, R., Curr. Med. Chem., 2010, vol. 17, no. 32, pp. 3855–3873.

    Article  CAS  Google Scholar 

  12. Rajasekar, V.W., Enz. Eng., 2016, vol. 5, no. 1, pp. 138–139.

    Google Scholar 

  13. Rodriguez-Herrera, R., Puc, L.E.C., Sobrevilla, J.M.V., Luque, D., Cardona-Felix, C.S., Aguilar-González, C.N., and Flores-Gallegos, A.C., Enzymes in the Pharmaceutical Industry for β-Lactam Antibiotic Production, Kuddus, M., Ed., Acad. Press, 2019, ch. 36, p. 627–643.

    Book  Google Scholar 

  14. Kurochkina, V.B. and Sklyarenko, A.V., in Enzymatic Synthesis of beta-Lactam Antibiotics, Zaikov, G.E., Ed., New York: Nova Science Publishers, 2008, pp. 175–204.

    Google Scholar 

  15. Kurochkina, V.B. and Nys, P.S., Antibiot. Khimioter., 1999, vol. 44, no. 5, pp. 12–16.

    CAS  PubMed  Google Scholar 

  16. Kurochkina, V.B. and Nys, P.S., Biocatal. Biotransform., 2002, vol. 20, no. 1, pp. 35–41.

    Article  CAS  Google Scholar 

  17. Nys, P.S. and Kurochkina, V.B., Appl. Biochem. Biotechnol., 2000, vol. 88, nos. 1–3, pp. 221–229.

    Article  CAS  Google Scholar 

  18. RF Patent no. 2210596, 2000.

  19. RF Patent no. 2420581, 2011.

  20. Eldarov, M.A., Sklyarenko, A.V., Mardanov, A.V., Beletsky, A.V., Zhgun, A.A., Dumina, M.V., Medvedeva, N.V., Satarova, D.E., Ravin, N.V., and Yarockii, S.V., Appl. Biochem. Microbiol., 2015, vol. 51, no. 5, pp. 505–510.

    Article  CAS  Google Scholar 

  21. El'darov, M.A., Sklyarenko, A.V., Dumina, M.V., Medvedeva, N.V., Zhgun, A.A., Satarova, D.E., Sidorenko, A.I., Epremyan, A.S., and Yarotskii, S.V., Biomed. Khim., 2015, vol. 61, no. 5, pp. 646–651.

    Article  CAS  Google Scholar 

  22. Park, C.B., Lee, S.B., and Ryu, D.D., J. Mol. Catal., 2000, vol. 9, nos. 4–6, pp. 275–281.

    Article  CAS  Google Scholar 

  23. Fernandez-Lafuente, R., Guisan, J.M., Pregnolato, M., and Terreni, M., Tetrahedron Lett., 1997, vol. 38, no. 26, pp. 4693–4696.

    Article  CAS  Google Scholar 

  24. Hernandez-Justiz, O., Fernandez-Lafuente, R., Guisan, J.M., Negri, P., Pagani, G., and Pregnolato, M., Org. Chem., 1997, vol. 62, no. 26, pp. 9099–9106.

    Article  Google Scholar 

  25. Berezin, I.V. and Klesov, A.A., in Prakticheskii kurs khimicheskoi i fermentativnoi kinetiki (Practical Course of Chemical and Enzymatic Kinetics), Moscow: Mosk. Gos. Univ., 1976, p. 79.

  26. Kurochkina, V.B., Sklyarenko, A.V., Satarova, D.E., and Yarosky, S.V., Bioprocess Biosyst. Eng., 2011, vol. 34, no. 9, pp. 1103–1117.

    Article  CAS  Google Scholar 

  27. McDonald, M.A., Bommarius, A.S., and Rousseau, R.W., Chem. Eng. Sci., 2017, vol. 165, pp. 81–88.

    Article  CAS  Google Scholar 

  28. Bulycheva, M.S., Nys, P.S., and Savitskaya, E.M., Antibiotiki, 1977, vol. 22, no. 12, pp. 1073–1076.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by State Project no. 595-00003-19 PR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sklyarenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by S. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sklyarenko, A.V., Groshkova, I.A., Sidorenko, A.I. et al. Alternative Cefazolin Synthesis with a Cephalosporin-Acid Synthetase. Appl Biochem Microbiol 56, 526–537 (2020). https://doi.org/10.1134/S0003683820050130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820050130

Keywords:

Navigation