Skip to main content
Log in

Biotechnological Approaches to the Bioremediation of an Environment Polluted with Trinitrotoluene

  • PROBLEMS, PROSPECTS
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The review covers the strategies for the biodegradation of a dangerous pollutant of the environment, an explosive 2,4,6-trinitrotoluene. The characteristics of the metabolism of this compound in microorganisms under aerobic and anaerobic conditions and the main enzymes involved in the transformation are described. The main class of enzymes involved in the destruction of trinitrotoluene are nitroreductases; oxidases, hydrogenases, and peroxidases may also be involved in degradation. Several approaches to the biodegradation of trinitrotoluene in the environment have been singled out and discussed: bioaugmentation of the biomass of TNT-destructor strains and consortia of microorganisms that degrade this compound; stimulation of the autochthonous microflora of polluted natural environments via the introduction of additional substrates for microorganism growth and electron donors for the reduction of trinitrotoluene; pollutant biodegradation by immobilized cells of microorganisms in bioreactors and biofilters; phytoremediation and the application of preventive measures consisting of the introduction of spores and lyophilisates of bacteria with biodegradation activity in a mixture containing nitroaromatic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ju, K.-S. and Parales, R.E., Nitroaromatic compounds, from synthesis to biodegradation, Microbiol. Mol. Biol. Rev., 2010, vol. 74, no. 2, pp. 250–272. doi 10.1128/MMBR.00006-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mercimek, H.A., Dincer, S., Guzeldag, G., et al., Degradation of 2,4,6-trinitrotoluene by P. aeruginosa and characterization of some metabolites, Braz. J. Microbiol., 2015, vol. 46, no. 1, pp. 103–111. doi 10.1590/S1517-838246120140026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kalderis, D., Hawthorne, S.B., Clifford, A.A., and Gidarakos, E., Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water, J. Hazard. Mater., 2008, vol. 159, pp. 329–334. doi 10.1016/j.jhazmat.2008.02.041

    Article  CAS  PubMed  Google Scholar 

  4. Fu, D., Zhang, Y., Lv, F., et al., Removal of organic materials from TNT red water by Bamboo Charcoal adsorption, Chem. Eng. J., 2012, vols. 193–194, pp. 39–49. doi 10.1016/j.cej.2012.03.039

  5. Muter, O., Potapova, K., Limane, B., et al., The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil, J. Environ. Manage., 2012, vol. 98, pp. 51–55. doi 10.1016/j.jenvman.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  6. Claus, H., Microbial degradation of 2,4,6-trinitrotoluene in vitro and in natural environments, in Biological Remediation of Explosive Residues, Environmental Science and Engineering, Singh, S.N., Ed., Switzerland: Springer International Publishing, 2014, pp. 15–38. doi 10.1007/978-3-319-01083-0_2

    Google Scholar 

  7. Kao, C.-M., Lin, B.-H., Chen, S.-C., et al., Biodegradation of trinitrotoluene (TNT) by indigenous microorganisms from TNT contaminated soil, and their application in TNT bioremediation, Bioremed. J., 2016, vol. 20, no. 3, pp. 165–173. doi 10.1080/10889868.2016.1148007

    Article  CAS  Google Scholar 

  8. Stenuit, B.A. and Agathos, S.N., Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa?, Appl. Microbiol. Biotechnol., 2010, vol. 88, pp. 1043–1064. doi 10.1007/ s00253-010-2830-x

    Article  CAS  PubMed  Google Scholar 

  9. Gallagher, E.M., Young, L.Y., McGuinness, L.M., and Kerkhof, L.J., Detection of 2,4,6-trinitrotoluene-utilizing anaerobic bacteria by 15N and 13C incorporation, Appl. Environ. Microbiol., 2010, vol. 76, no. 5, pp. 1695–1698. doi 10.1128/AEM.02274-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montgomery, M.T., Coffin, R.B., Boyd, T.J., et al., 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments, Environ. Pollut., 2011, vol. 159, pp. 3673–3680. doi 10.1016/j.envpol.2011.07.018

    Article  CAS  PubMed  Google Scholar 

  11. Erkelens, M., Adetutu, E.M., Taha, M., et al., Sustainable remediation—the application of bioremediated soil for use in the degradation of TNT chips, J. Environ. Manage., 2012, vol. 110, pp. 69–76. doi 10.1016/j.jenvman.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  12. Kulkarni, M. and Chaudhari, A., Microbial remediation of nitro-aromatic compounds: an overview, J. Environ. Manage., 2007, vol. 85, pp. 496–512. doi 10.1016/j.jenvman.2007.06.009

    CAS  PubMed  Google Scholar 

  13. Innemanova, P., Velebova, R., Filipova, A., et al., Anaerobic in situ biodegradation of TNT using whey as an electron donor: a case study, New Biotechnol., 2015, vol. 32, no. 6, pp. 701–709. doi 10.1016/j.nbt.2015.03.014

    Article  CAS  Google Scholar 

  14. Adrian, N.R. and Arnett, C.M., Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol, Chemosphere, 2007, vol. 66, pp. 1849–1856. doi 10.1016/j.chemosphere.2006.08.042

    Article  CAS  PubMed  Google Scholar 

  15. Sheu, Y.T., Lien, P.J., Chen, C.C., et al., Bioremediation of 2,4,6-trinitrotoluene-contaminated groundwater using unique bacterial strains: microcosm and mechanism studies, Int. J. Environ. Sci. Technol., 2016, vol. 13, pp. 1357–1366. doi 10.1007/s13762-016-0976-5

    Article  CAS  Google Scholar 

  16. Chatterjee, S., Deb, U., Datta, S., et al., Common explosives (TNT, RDX, HMX) and their fate in the environment: emphasizing bioremediation, Chemosphere, 2017, vol. 184, pp. 438–451. doi 10.1016/j.chemosphere.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  17. Glick, B.R., Using soil bacteria to facilitate phytoremediation, Biotech. Adv., 2010, vol. 28, pp. 367–374. doi 10.1016/j.biotechadv.2010.02.001

    Article  CAS  Google Scholar 

  18. Das, P., Datta, R., Makris, K.C., and Sarkar, D., Vetiver grass is capable of removing TNT from soil in the presence of urea, Environ. Pollut., 2010, vol. 158, pp. 1980–1983. doi 10.1016/j.envpol.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  19. Das, P., Sarkar, D., Makris, K.C., and Datta, R., Urea-facilitated uptake and nitroreductase-mediated transformation of 2,4,6-trinitrotoluene in soil using vetiver grass, J. Environ. Chem. Eng., 2015, vol. 3, no. 1, pp. 445–452. doi 10.1016/j.jece.2015.01.008

    Article  CAS  Google Scholar 

  20. Kiiskila, J.D., Das, P., Sarkar, D., and Datta, R., Phytoremediation of explosive-contaminated soils, Curr. Pollut. Rep., 2015, vol. 1, pp. 23–34. doi 10.1007/s40726-015-0003-3

    Article  CAS  Google Scholar 

  21. Afzal, M., Khan, Q.M., and Sessitsch, A., Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants, Chemosphere, 2014, vol. 117, pp. 232–242. doi 10.1016/j.chemosphere.2014.06.078

    Article  CAS  PubMed  Google Scholar 

  22. Hannink, N.K., Subramanian, M., Rosser, S.J., et al., Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase, Int. J. Phytorem., 2007, vol. 9, pp. 385–401. doi 10.1080/ 15226510701603916

    Article  CAS  Google Scholar 

  23. Kurumata, M., Takahashi, M., Sakamoto, A., et al., Tolerance to, and uptake and degradation of 2,4,6-trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana, Z. Naturforsch. C, 2005, vol. 60, nos. 3—4, pp. 272–278. doi 10.1515/znc-2005-3-412

    Article  CAS  PubMed  Google Scholar 

  24. van Dillewijn, P., Couselo, J.L., Corredoira, E., et al., Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen, Environ. Sci. Technol., 2008, vol. 42, no. 19, pp. 7405–7410. doi 10.1021/es801231w

    Article  CAS  PubMed  Google Scholar 

  25. French, C.E., Rosser, S.J., Davies, G.J., et al., Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase, Nat. Biotechnol., 1999, vol. 17, pp. 491–494. doi 10.1038/8673

    Article  CAS  PubMed  Google Scholar 

  26. Zhu, B., Peng, R.H., Fu, X.Y., et al., Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme, Plos One, 2012, vol. 7, no. 7. e39 861. doi 10.1371/journal.pone.0039861

    Article  CAS  Google Scholar 

  27. Panz, K. and Miksch, K., Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants, J. Environ. Manage., 2012, vol. 113, pp. 85–92. doi 10.1016/j.jenvman.2012.08.016

    Article  CAS  PubMed  Google Scholar 

  28. Makris, K.C., Sarkar, D., and Datta, R., Coupling indigenous biostimulation and phytoremediation for the restoration of 2,4,6-trinitrotoluene-contaminated sites, J. Environ. Monit., 2010, vol. 12, pp. 399–403. doi 10.1039/b908162c

    Article  CAS  PubMed  Google Scholar 

  29. Ullah, H., Shah, A.A., Hasan, F., and Hameed, A., Biodegradation of trinitrotoluene by immobilized Bacillus sp. YRE1, Pak. J. Bot., 2010, vol. 42, no. 5, pp. 3357–3367.

    CAS  Google Scholar 

  30. Solyanikova, I.P., Robota, I.V., Mazur, D.M., et al., Application of Bacillus sp. strain VT-8 for decontamination of TNT polluted sites, Microbiology, 2014, vol. 83, no. 5, pp. 577–584. doi 10.1134/S0026261714050257

    Article  CAS  Google Scholar 

  31. Lin, H., Chen, Z., Megharaj, M., and Naidu, R., Biodegradation of TNT using Bacillus mycoides immobilized in PVA–sodium alginate—kaolin, Appl. Clay Sci., 2013, vol. 83-84, pp. 336–342. doi 10.1016/j.clay.2013.08.004

    Article  CAS  Google Scholar 

  32. Wang, Z., Ye, Z., Zhang, M., and Bai, X., Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter, Process Biochem., 2010, vol. 45, pp. 993–1001. doi 10.1016/j.procbio.2010.03.006

    Article  CAS  Google Scholar 

  33. Zhang, M., Liu, G.-H., Song, K., et al., Biological treatment of 2,4,6-trinitrotoluene (TNT) red water by immobilized anaerobic–aerobic microbial filters, Chem. Eng. J., 2015, vol. 259, pp. 876–884. doi 10.1016/j.cej.2014.08.041

    Article  CAS  Google Scholar 

  34. Nyanhongo, G.S., Aichernig, N., Ortner, M., et al., Incorporation of 2,4,6-trinitrotoluene (TNT) transforming bacteria into explosive formulations, J. Hazard. Mater., 2009, vol. 165, pp. 285–290. doi 10.1016/j.jhazmat.2008.09.107

    Article  CAS  PubMed  Google Scholar 

  35. Mercimek, H.A., Dincer, S., Guzeldag, G., et al., Aerobic biodegradation of 2,4,6-trinitrotoluene (TNT) by Bacillus cereus isolated from contaminated soil, Microb. Ecol., 2013, vol. 66, pp. 512–521. doi 10.1007/s00248-013-0248-6

    Article  CAS  PubMed  Google Scholar 

  36. Bai, J., Yang, J., Liu, P., and Yang, Q., Transformation pathway of 2,4,6-trinitrotoluene by Escherichia coli nitroreductases and improvement of activity using structure-based mutagenesis, Process Biochem., 2015, vol. 50, pp. 705–711. doi 10.1016/j.procbio.2015.01.029

    Article  CAS  Google Scholar 

  37. Smets, B.F., Yin, H., and Esteve-Nunez, A., TNT biotransformation: when chemistry confronts mineralization, Appl. Microbiol. Biotechnol., 2007, vol. 76, pp. 267–277. doi 10.1007/s00253-007-1008-7

    Article  CAS  PubMed  Google Scholar 

  38. Rylott, E.L., Lorenz, A., and Bruce, N.C., Biodegradation and biotransformation of explosives, Curr. Opin. Biotechnol., 2011, vol. 22, pp. 434–440. doi 10.1016/ j.copbio.2010.10.014

    Article  CAS  PubMed  Google Scholar 

  39. Keenan, B.G. and Wood, T.K., Orthric Rieske dioxygenases for degrading mixtures of 2,4-dinitrotoluene/naphthalene and 2-amino-4,6-dinitrotoluene/4-amino-2,6-dinitrotoluene, Appl. Microbiol. Biotechnol., 2006, vol. 73, pp. 827–838. doi 10.1007/s00253-006-0538-8

    Article  CAS  PubMed  Google Scholar 

  40. Nyanhongo, G.S., Schroeder, M., Steiner, W., and Gubitz, G.M., Biodegradation of 2,4,6-trinitrotoluene (TNT): an enzymatic perspective, Biocatal. Biotransform., 2005, vol. 23, no.2, pp. 53–69. doi 10.1080/10242420500090169

    Article  CAS  Google Scholar 

  41. Esteve-Nunez, A., Caballero, A., and Ramos, J.L., Biological degradation of 2,4,6-trinitrotoluene, Microbiol. Mol. Biol. Rev., 2001, vol. 65, no. 3, pp. 335–352. doi 10.1128/MMBR.65.3.335–352.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Solyanikova, I.P., Baskunov, B.P., Baboshin, M.A., et al., Detoxification of high concentrations of trinitrotoluene by bacteria, App. Biochem. Microbiol., 2012, vol. 48, no. 1, pp. 21–27.

    Article  CAS  Google Scholar 

  43. Gumuscu, B. and Tekinay, T., Effective biodegradation of 2,4,6-trinitrotoluene using a novel bacterial strain isolated from TNT-contaminated soil, Int. Biodeterior. Biodegrad., 2013, vol. 85, pp. 35–41. doi 10.1016/j.ibiod.2013.06.007

    Article  CAS  Google Scholar 

  44. Lee, B.-U., Park, S.-C., Cho, Y.-S., et al., Expression and characterization of the TNT nitroreductase of Pseudomonas sp. HK-6 in Escherichia coli, Curr. Microbiol., 2008, vol. 56, pp. 386–390. doi 10.1007/s00284-007-9093-5

    Article  CAS  PubMed  Google Scholar 

  45. Hong, Y. and Gu, J.-D., Bacterial anaerobic respiration and electron transfer relevant to the biotransformation of pollutants, Int. Biodeterior. Biodegrad., 2009, vol. 63, pp. 973–980. doi 10.1016/j.ibiod.2009.08.001

    Article  CAS  Google Scholar 

  46. Huang, J., Ning, G., Li, F., and Sheng, G.D., Biotransformation of 2,4-dinitrotoluene by obligate marine Shewanella marisflavi EP1 under anaerobic conditions, Bioresour. Technol., 2015, vol. 180, pp. 200–206. doi 10.1016/j.biortech.2014.12.108

    Article  CAS  PubMed  Google Scholar 

  47. Bhattacharya, J., Dev, S., and Das, B., Low Cost Wastewater Bioremediation Technology, Chapter 2: Nutrients for the Selective Growth of Specific Bacteria, Elsevier, 2018, pp. 43–75

  48. Meier, M.J., Paterson, E.S., and Lambert, I.B., Use of substrate-induced gene expression in metagenomic analysis of an aromatic hydrocarbon-contaminated soil, Appl. Environ. Microbiol., 2016, vol. 82, no. 3, pp. 897–909. doi 10.1128/AEM.03306-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Park, C., Kim, T.-H., Kim, S., et al., Enhanced biodegradation of 2,4,6-trinitrotoluene (TNT) with various supplemental energy sources, J. Microbiol. Biotechnol., 2002, vol. 12, no. 4, pp. 695—698.

    CAS  Google Scholar 

  50. Liang, S.-H., Hsu, D.-W., Lin, C.-Y., et al., Enhancement of microbial 2,4,6-trinitrotoluene transformation with increased toxicity by exogenous nutrient amendment, Ecotoxicol. Environ. Saf., 2017, vol. 138, pp. 39–46. doi 10.1016/j.ecoenv.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  51. Khilyas, I.V., Ziganshin, A.M., Pannier, A.J., and Gerlach, R., Effect of ferrihydrite on 2,4,6-trinitrotoluene biotransformation by an aerobic yeast, Biodegradtion, 2013, vol. 24, no. 5, pp. 631–644. doi 10.1007/s10532-012-9611-4

    Article  CAS  Google Scholar 

  52. Soojhawon, I., Lokhande, P.D., Kodam, K.M., and Gawai, K.R., Biotransformation of nitroaromatics and their effects on mixed function oxidase system, Enzyme Microb. Technol., 2005, vol. 37, no. 5, pp. 527–533. doi 10.1016/j.enzmictec.2005.03.011

    Article  CAS  Google Scholar 

  53. Lin, H.-Y., Yu, C.-P., and Chen, Z.-L., Aerobic and anaerobic biodegradation of TNT by newly isolated Bacillus mycoides, Ecol. Eng., 2013, vol. 52, pp. 270–277. doi 10.1016/j.ecoleng.2012.11.004

    Article  Google Scholar 

  54. Bernstein, A. and Ronen, Z., Biodegradation of the explosives TNT, RDX and HMX in microbial degradation of xenobiotics, in Environmental Science and Engineering, Singh, S.N., Ed., Berlin: Springer, 2012, pp. 135–176.

    Google Scholar 

  55. Zaripov, S.A., Naumov, A.V., Abdrakhmanova, J.F., et al., Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts, FEMS Microbiol. Lett., 2002, vol. 217, pp. 213–217. doi 10.1111/j.1574-6968.2002.tb11477.x

    Article  CAS  PubMed  Google Scholar 

  56. Ziganshin, A.M., Gerlakh, R., Naumenko, E.A., and Naumova, R.P., Aerobic Degradation of 2,4,6-trinitrotoluene by the YEAST STRAIN Geotrichum candidum AN-Z4, Microbiology (Moscow), 2010, vol. 79, no. 2, pp. 178–183.

    Article  CAS  Google Scholar 

  57. Anasonye, F., Winquist, E., Rasanen, M., et al., Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions, Int. Biodeterior. Biodegrad., 2015, vol. 105, pp. 7–12. doi 10.1016/j.ibiod.2015.08.003

    Article  CAS  Google Scholar 

  58. Ziganshin, A.M., Naumova, R.P., Pannier, A.J., and Gerlach, R., Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica, Chemosphere, 2010, vol. 79, pp. 426–433. doi 10.1016/j.chemosphere.2010.01.051

    Article  CAS  PubMed  Google Scholar 

  59. Gallagher, E.M., Anaerobic degradation of 2,4,6- trinitrotoluene (TNT): molecular analysis of active degraders and metabolic pathways, Ph.D. Thesis, New Brunswick, New Jersey, 2010.

  60. Fleischmann, T.J., Walker, K.C., Spain, J.C., et al., Anaerobic transformation of 2,4,6-TNT by bovine ruminal microbes, Biochem. Biophys. Res. Commun., 2004, vol. 314, pp. 957–963. doi 10.1016/j.bbrc.2003.12.193

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by Russian Foundation for Basic Research and Perm Region (project no. 16-44-590359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Maksimova.

Additional information

Translated by A. Ostyak

Abbreviations: TNT—trinitrotoluene; UV—ultraviolet radiation; COD—chemical oxygen consumption; SIGEX—substrate-induced gene expression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, Y.G., Maksimov, A.Y. & Demakov, V.A. Biotechnological Approaches to the Bioremediation of an Environment Polluted with Trinitrotoluene. Appl Biochem Microbiol 54, 767–779 (2018). https://doi.org/10.1134/S0003683818080045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818080045

Keywords:

Navigation