Skip to main content
Log in

Bioremediation of 2,4,6-trinitrotoluene-contaminated groundwater using unique bacterial strains: microcosm and mechanism studies

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Groundwater at many military factory, munition storage and maneuver sites is contaminated by explosives chemicals that were released into the subsurface. The 2,4,6-trinitrotoluene (TNT) is among the most common explosive pollutants. In this study, two TNT-degrading strains, isolated from TNT-contaminated soils and wastewater sludge, were applied for TNT biodegradation. Based on the 16S rDNA sequence analyses, these two bacterial strains were identified as Achromobacter sp. and Klebsiella sp. via biochemical and DNA analyses. Microcosm study was conducted to evaluate the feasibility and efficiency of TNT biodegradation under aerobic conditions. Results indicate that TNT degradation by-products were detected in microcosms (inoculated with Achromobacter sp. and Klebsiella sp.) with cane molasses addition. Klebsiella sp. and Achromobacter sp. used TNT as the nitrogen source and caused completely removal of TNT. Two possible TNT biodegradation routes could be derived: (1) part of the TNT was transformed to nitrotoluene then transformed to nitrobenzene followed by the nitro substitute process, and trinitrobenzene, dinitrobenzene, and nitrobenzene were detected; and (2) TNT was transformed via the nitro substitute mechanism, and dinitrotoluene followed by nitrotoluene isomers were detected. The initial TNT degradation involved the reduction or removal of the nitro substitute to an amino derivative or free nitrite. Results show that the second route was the dominant TNT biodegradation pathway. The produced by-products were also degraded without significant accumulation during the degradation process. These findings would be helpful in designing a practical system inoculated with isolated TNT degradation strains for the treatment of TNT-contained groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: a review. J Hazard Mater 178(1–3):10–28

    Article  CAS  Google Scholar 

  • Baldwin BR, Nakatsu CH, Nies L (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol 69:3350–3358

    Article  CAS  Google Scholar 

  • Boopathy R, Manning J, Kulpa CF (1998) A laboratory study of the bioremediation of 2,4,6-trinitrotoluene-contaminated soil using aerobic/anoxic soil slurry reactor. Water Environ Res 70:80–86

    Article  CAS  Google Scholar 

  • Cohen R, Zeiri Y, Wurzberg E, Kosloff R (2007) Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study. J Phys Chem A 111:11074–11083

    Article  CAS  Google Scholar 

  • Das P, Sarkar D, Makris KC, Punamiya P, Datta R (2013) Effectiveness of urea in enhancing the extractability of 2,4,6-trinitrotoluene from chemically variant soils. Chemosphere 93:1811–1817

    Article  CAS  Google Scholar 

  • Douglas TA, Walsh ME, Weiss CA, McGrath CJ, Trainor TP (2012) Desorption and transformation of nitroaromatic (TNT) and nitramine (RDX and HMX) explosive residues on detonated pure mineral phases. Water Air Soil Pollut 223:2189–2200

    Article  CAS  Google Scholar 

  • Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel KH, Gemsa D (1998) Mass balance studies with 14C-labeled 2,4,6-trinitrotoluene (TNT) mediated by an anaerobic Desulfovibrio species and an aerobic Serratia species. Curr Microbiol 37:380–386

    Article  CAS  Google Scholar 

  • Ederer MM, Lewis TA, Crawford RL (1997) 2,4,6-Trinitrotoluene (TNT) transformation by Clostridia isolated from a munition-fed bioreactor: comparison with non-adapted bacteria. J Ind Microbiol Biotechnol 18:82–88

    Article  CAS  Google Scholar 

  • Elazhari-Ali A, Singh AK, Davenport RJ, Head IM, Werner D (2013) Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil. Environ Pollut 173:125–132

    Article  CAS  Google Scholar 

  • Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol 65(3):335–352

    Article  CAS  Google Scholar 

  • Fiorella PD, Spain JC (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol 63(5):2007–2015

    CAS  Google Scholar 

  • Fu D, Zhang Y, Lv FZ, Chu PK, Shang J (2012) Removal of organic materials from TNT red water by Bamboo Charcoal adsorption. Chem Eng J 193–194:39–49

    Article  Google Scholar 

  • Fuller ME, Lowey JM, Schaefer CE, Steffan RJ (2005) A peat moss-base technology for migrating residues of explosives TNT, RDX, and HMX in soil. Soil Sediment Contam 14:373–385

    Article  CAS  Google Scholar 

  • Gallagher EM, Young LY, McGuinness LM, Kerkhof LJ (2010) Detection of 2,4,6-trinitrotoluene-utilizing anaerobic bacteria by 15N and 13C incorporation. Appl Environ Microbiol 76:1695–1698

    Article  CAS  Google Scholar 

  • Gao DW, Hu Q, Yao C, Ren NQ, Wu WM (2014) Integrated anaerobic fluidized bed membrane bioreactor for domestic wastewater treatment. Chem Eng J 240:362–368

    Article  CAS  Google Scholar 

  • Gumuscu B, Tekinay T (2013) Effective biodegradation of 2,4,6-trinitrotoluene using a novel bacterial strain isolated from TNT-contaminated soil. Int Biodeterior Biodegrad 85:35–41

    Article  CAS  Google Scholar 

  • Hannink N, Rosser SJ, Nicklin S, Bruce NC (2002) Phytoremediation of explosives. Crit Rev Plant Sci 21(5):511–538

    Article  CAS  Google Scholar 

  • Hao OJ, Phull KK, Chen JM, Davis AP, Maloney SW (1993) Factors affecting wet air oxidation of TNT red water-rate studies. J Hazard Mater 34:51–68

    Article  CAS  Google Scholar 

  • Hesham A, Qi R, Yang M (2011) Comparison of bacterial community structures in two systems of a sewage treatment plant using PCR-DGGE analysis. J Environ Sci 23(12):2049–2054

    Article  Google Scholar 

  • Hughes JB, Shanks M, Vanderford J, Lauritzen BR (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sic Technol 31:266–271

    Article  CAS  Google Scholar 

  • Hwang S, Ruff TJ, Bouwer EJ, Larson SL, Davis JL (2005) Applicability of alkaline hydrolysis for remediation of TNT-contaminated water. Water Res 39(18):4503–4511

    Article  CAS  Google Scholar 

  • Islam MN, Shin MS, Jo YT, Park JH (2015) TNT and RDX degradation and extraction from contaminated soil using subcritical water. Chemosphere 119:1148–1152

    Article  CAS  Google Scholar 

  • Jones AM, Grier CW, Ampleman G, Thiboutot S, Lavigne J, Halawari J (1995) Biodegradability of selected highly energetic pollutants under aerobic conditions. Battelle, Columbus, pp 251–258

    Google Scholar 

  • Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36(1):45–54

    Article  CAS  Google Scholar 

  • Kao CM, Chen CS, Tsa FU, Yang KH, Chien CC, Liang SH, Yang CA, Chen SC (2010) Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. J Hazard Mater 178:409–416

    Article  CAS  Google Scholar 

  • Khan TA, Bhadra R, Hughes J (1997) Anaerobic transformation of 2,4,6-TNT and related nitroaromatic compounds by Clostridium acetobutylicum. J Ind Microbiol Biotechnol 18:198–203

    Article  CAS  Google Scholar 

  • Larson SL, Martin WA, Scalon BL, Thompson M (2008) Dissolution, sorption, and kinetics involved in systems containing explosives, water, and soil. Environ Sci Technol 42:786–792

    Article  CAS  Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manage 70:291–307

    Article  Google Scholar 

  • Li T, Wang HJ, Dong WY, Liu TZ, Ouyang F, Zhang Q, Dong XQ (2014) Performance of an anoxic reactor proposed before BAF: effect of ferrous sulfate on enhancing denitrification during simultaneous phosphorous removal. Chem Eng J 248:41–48

    Article  CAS  Google Scholar 

  • Liang SH, Kuo YC, Chen SH, Surampalli RY, Kao CM (2013) Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers. J Hazard Mater 254–255:107–115

    Article  Google Scholar 

  • Limane B, Muter O, Juhanson J, Truu M, Truu J, Nolvak H (2011) Characterization of Microbial community structure after application of different bioremediation approaches in TNT contaminated Soil. Environ Eng Vilnius Lith 19–20:188–194

    Google Scholar 

  • Lin YJ (2014) Biodegradation of TNT-contaminated groundwater. Master Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan

  • Lin H, Chen Z, Megharaj M, Naidu R (2013a) Biodegradation of TNT using Bacillus mycoides immobilized in PVA–sodium alginate–kaolin. Appl Clay Sci 83–84:336–342

    Article  Google Scholar 

  • Lin HY, Yu CP, Chen ZL (2013b) Aerobic and anaerobic biodegradation of TNT by newly isolated Bacillus mycoides. Ecol Eng 52:270–277

    Article  Google Scholar 

  • Maeda T, Nagafuchi N, Kubota A, Kadokami K, Ogawa HI (2006) One-step isolation and identification of hydroxylamino-dinitrotoluenes, unstable products from 2,4,6-trinitrotoluene metabolites, with thin-layer chromatography and laser time-of-flight mass spectrometry. J Chromatogr Sci 44:96–100

    Article  CAS  Google Scholar 

  • Martin JL, Comfort SD, Shea PJ, Kokjohn TA, Drijber RA (1997) Denitrification of 2,4,6-trinitrotoluene by Pseudomonas savastanoi. Can J Microbiol 43:447–455

    Article  CAS  Google Scholar 

  • Matta R, Hanna K, Chiron S (2007) Fenton-like oxidation of trinitrotoluene using different irons. Sci Total Environ 385:242–251

    Article  CAS  Google Scholar 

  • Montpas S, Samson J, Langlois E, Lei J, Piche Y, Chêvenert R (1997) Degradation of 2,4,6-trinitrotoluene by Serratia marcescens. Biotechnol Lett 19:291–294

    Article  CAS  Google Scholar 

  • Muter O, Potapova K, Limane B, Sproge K, Jakobsone I, Cepurnieks G, Bartkevics V (2012) The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. J Environ Manage 98:51–55

    Article  CAS  Google Scholar 

  • Nishino SF, Shin KA, Payne RB, Spain JC (2010) Growth of bacteria on 3-nitropropionic acid as a sole source of carbon, nitrogen, and energy. Appl Environ Microbiol 76:3590–3598

    Article  CAS  Google Scholar 

  • Nyanhongo GS, Schroeder M, Stenier W, Gubitz GM (2005) Biocatal Biotransform 23(2):53–69

    Article  CAS  Google Scholar 

  • Pak J, Knoke K, Noguera D, Fox B, Chambliss G (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750

    Article  CAS  Google Scholar 

  • Qiao S, Tian T, Duan X, Zhou JT, Chen YJ (2013) Novel single-stage autotrophic nitrogen removal via co-immobilizing partial nitrifying and anammox biomass. Chem Eng J 230:19–26

    Article  CAS  Google Scholar 

  • Rahal AG, Lobna AM (2011) Degradation of 2,4,6-trinitrotoluene (TNT) by soil bacteria isolated from TNT contaminated soil. Aust J Basic Appl Sci 55(2):8–17

    Google Scholar 

  • Rodrigues M, Silva F, Paiva T (2009) Combined zero-valent iron and Fenton processes for the treatment of Brazilian TNT industry wastewater. J Hazard Mater 165:1224–1228

    Article  Google Scholar 

  • Sheibani G, Naeimpoor F, Hejazi P (2011) Statistical factor-screening and optimization in slurry phase bioremediation of 2,4,6-trinitrotoluene contaminated soil. J Hazard Mater 188:1–9

    Article  CAS  Google Scholar 

  • Solyanikova IP, Baskunov BP, Baboshin MA, Saralov AI, Golovleva LA (2012) Detoxification of high concentrations of trinitrotoluene by bacteria. Appl Biochem Microbiol 48:21–27

    Article  CAS  Google Scholar 

  • Stenuit BA, Agathos SN (2013) Biodegradation and bioremediation of TNT and other nitro explosives. Ref Modul Earth Syst Environ Sci 6:167–181

    Google Scholar 

  • Toshinari M, Kiwao K, Hiroaki IO (2006) Characterization of 2,4,6-trinitrotoluene (TNT)-metabolizing bacteria isolated from TNT-polluted soils in the Yamada Green Zone, Kitakyushu, Japan. J Environ Biotechnol 6:33–39

    Google Scholar 

  • Vanderberg LA, Perry JJ, Unkefer PJ (1995) Catabolism of 2,4,6-trinitrotoluene by Mycobacterium vaccae. Appl Microbiol Biotechnol 43(5):937–945

    Article  CAS  Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Knackmuss HJ (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol 176:932–934

    CAS  Google Scholar 

  • Wang ZY, Ye ZF, Zhang MH, Bai X (2010) Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter. Process Biochem 45:993–1001

    Article  CAS  Google Scholar 

  • Yanru Y, Manuel P, William S, Josef Z (2005) Identification of microorganisms involved in reductive dehalogenation of chlorinated ethenes in an anaerobic microbial community. Water Res 39:3954–3966

    Article  Google Scholar 

  • Zhang MH, Zhao QL, Ye ZF (2011) Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke. J Environ Sci China 23:1962–1969

    Article  CAS  Google Scholar 

  • Ziganshin AM, Gerlach R, Naumenko E, Naumova RP (2010a) Aerobic degradation of 2,4,6-trinitrotoluene by the yeast strain Geotrichum candidum AN-Z4. Microbiology 79:178–183

    Article  CAS  Google Scholar 

  • Ziganshin AM, Naumova RP, Pannier AJ, Gerlach R (2010b) Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica. Chemosphere 79:426–433

    Article  CAS  Google Scholar 

  • Zou WS, Zou FH, Shao Q, Zhang J, Wang YQ, Xie FZ, Ding Y (2014) A selective fluorescent resonance energy transfer quenching and resonance light scattering enhancement dual-recognition probe for 2,4,6-trinitrotoluene. J Photochem Photobiol A 278:82–88

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded in part by Ministry of Science and Technology, Taiwan. The authors would like to thank the personnel at Ministry of Science and Technology and researchers at the Department of Biological Science, National Sun Yat-Sen University, Taiwan for their assistance and support throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Kao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheu, Y.T., Lien, P.J., Chen, C.C. et al. Bioremediation of 2,4,6-trinitrotoluene-contaminated groundwater using unique bacterial strains: microcosm and mechanism studies. Int. J. Environ. Sci. Technol. 13, 1357–1366 (2016). https://doi.org/10.1007/s13762-016-0976-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-0976-5

Keywords

Navigation