Skip to main content

Bioremediation: Current Research Trends and Applications

  • Chapter
  • First Online:
Waste to Energy: Prospects and Applications

Abstract

Environmental pollution due to heavy metals, nuclear wastes, pesticides, nuclear gases, hydrocarbons, etc. seems to be of significant concern. The only possible solution to this is remediation using microbial processes (bioremediation). Bioremediation employs microbial metabolism under optimum environmental conditions and sufficient nutrients to degrade contaminants. This has proven to be effective and reliable due to its eco-friendly nature. Both in situ and ex situ techniques of bioremediation can be employed to reduce pollutant concentration. A diverse range of methods and strategies like bioaugmentation, biostimulation, bioventing, bioattenuation, etc. with their own merits and demerits are in use for the bioremediation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmentation: a review. Int J Environ Biorem Biodegr 3:28–39

    CAS  Google Scholar 

  • Agarry S, Latinwo GK (2015) Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulation-bioaugmentation agents. J Ecol Eng 16:82–91

    Article  Google Scholar 

  • Ali N, Dashti N, Khanafer M, Al-Awadhi H, Radwan S (2020) Bioremediation of soils saturated with spilled crude oil. Sci Rep 10:1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alwan AH, Fadil SM, Khadair SH, Haloub AA, Mohammed DB, Salah MF, sabbar SS, Mousa NK, Salah ZA (2013) Bioremediation of the water contaminated by waste of hydrocarbon by use Ceratophyllaceae and Potamogetonaceae plants. J Genet Environ Resour Conserv 1:106–110

    Google Scholar 

  • Amin MM, Hatamipour MS, Momenbeik F, Khiadani (Hajian) M, Mohammadi Moghadam F (2014) Soil remediation via bioventing, vapor extraction and transition regime between vapor extraction and bioventing. Int J Environ Health Eng 3:1

    Article  Google Scholar 

  • Asira EE (2013) Factors that determine bioremediation of organic compounds in the soil. Acad J Interdiscip Stud 2:125–128

    Google Scholar 

  • Barr D (2002) Biological methods for assessment and remediation of contaminated land: case studies. Construction Industry Research and Information Association, London

    Google Scholar 

  • Bergsveinson J, Perry BJ, Simpson GL, Yost CK, Schutzman RJ, Hall BD, Cameron ADS (2019) Spatial analysis of a hydrocarbon waste-remediating landfarm demonstrates influence of management practices on bacterial and fungal community structure. Microb Biotechnol 12(6):1199–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besaltatpour A, Hajabbasi M, Khoshgoftarmanesh A, Dorostkar V (2011) Landfarming process effects on biochemical properties of petroleum-contaminated soils. Soil Sediment Contam Int J 20:234–248

    Article  CAS  Google Scholar 

  • Bodour AA, Guerrero-Barajas C, Jiorle BV, Malcomson ME, Paull AK, Somogyi A, Trinh LN, Bates RB, Maier RM (2004) Structure and characterization of flavolipids, a novel group of biosurfactants produced by Flavobacterium sp. MTN11. Appl Environ Microbiol 70:114–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boparai HK, Shea PJ, Comfort SD, Machacek TA (2008) Sequencing zerovalent iron treatment with carbon amendments to remediate agrichemical-contaminated soil. Water Air Soil Pollut 193:189–196

    Article  CAS  Google Scholar 

  • Cerqueira VS, Peralba MR, Camargo FAO, Bento FM (2014) Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. Int Biodeter Biodegr 95:338–345

    Article  CAS  Google Scholar 

  • Cheung KHM (2013) Bioremediation of toxic metals. Master of Science in Environmental Management Dissertation, The University of Hong Kong, pp 1–96

    Google Scholar 

  • Colberg PJS, Young LY (1995) Anaerobic degradation of nonhalogenated homocyclic aromatic compounds coupled with nitrate, iron, or sulfate reduction. In: Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 307–330

    Google Scholar 

  • Coulon F, Al Awadi M, Cowie W, Mardlin D, Pollard S, Cunningham C, Risdon G, Arthur P, Semple KT, Paton GI (2010) When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environ Pollut 158:3032–3040

    Article  CAS  PubMed  Google Scholar 

  • Couto N, Fritt-Rasmussen J, Jensen PE, Højrup M, Rodrigo AP, Ribeiro AB (2014) Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility. Environ Sci Pollut Res 21:6221–6227

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 1:1–13

    CAS  Google Scholar 

  • Delille D, Duval A, Pelletier E (2008) Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil-contaminated sub-Antarctic soil. Cold Reg Sci Technol 54:7–18

    Article  Google Scholar 

  • Emami S, Pourbabaee AA, Alikhani HA (2012) Bioremediation principles and techniques on petroleum hydrocarbon contaminated soil. Tech J Eng Appl Sci 2:320–323

    Google Scholar 

  • Firmino PIM, Farias RS, Barros AN, Buarque PMC, Rodríguez E, Lopes AC, dos Santos AB (2015) Understanding the anaerobic BTEX removal in continuous-flow bioreactors for ex situ bioremediation purposes. Chem Eng J 281:272–280

    Article  CAS  Google Scholar 

  • Folch A, Vilaplana M, Amado L, Vicent R, Caminal G (2013) Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. J Hazard Mater 262:554–560

    Article  CAS  PubMed  Google Scholar 

  • Frutos FJG, Escolano O, Garcia S, Mar Babin M, Fernandez MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183:806–813

    Article  CAS  Google Scholar 

  • Fulekar MH, Sharma J (2008) Bioinformatics applied in bioremediation. Innov Rom Food Biotechnol 2:28–36

    Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526

    Article  CAS  Google Scholar 

  • Gelman F, Binstock R (2008) Natural attenuation of MTBE and BTEX compounds in a petroleum contaminated shallow coastal aquifer. Environ Chem Lett 6:259–262

    Article  CAS  Google Scholar 

  • Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeter Biodegr 89:103–109

    Article  CAS  Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372

    CAS  Google Scholar 

  • Henry B (2010) Biostimulation for anaerobic bioremediation of chlorinated solvents. In: In Situ remediation of chlorinated solvent plumes, pp 156–187

    Google Scholar 

  • Hobson AM, Frederickson J, Dise NB (2005) CH4 and N2O from mechanically turned windrow and vermicomposting systems following in vessel pre-treatment. Waste Manage 25:345–352

    Article  CAS  Google Scholar 

  • Jan AT, Azam M, Ali A, Haq QMR (2014) Prospects for exploiting bacteria for bioremediation of metal pollution. Crit Rev Environ Sci Technol 44:519–560

    Article  CAS  Google Scholar 

  • Kahraman BF, Altin A, Altin S, Bayik GD (2017) Biostimulation of n-alkane degradation in diesel fuel-spiked soils. Soil Sediment Contam Int J 26:486–500

    Article  CAS  Google Scholar 

  • Kang CH, Kwon YJ, So JS (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69

    Article  Google Scholar 

  • Kapahi, Sachdeva (2019) Bioremediation options for heavy metal pollution. J Health Pollut 9(24):191203

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122

    Article  PubMed  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093

    Google Scholar 

  • Kumar B, Smita K, Flores LC (2017) Plant mediated detoxification of mercury and lead. Arab J Chem 10(2):S2335–S2342

    Article  CAS  Google Scholar 

  • Lee TH, Byun IG, Kim YO, Hwang IS, Park TJ (2006) Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate. Water Sci Technol 53:263–272

    Article  CAS  PubMed  Google Scholar 

  • Li CH, Wong YS, Tam NF (2010) Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron (III) in mangrove sediment slurry. Bioresource Technol 101:8083–8092

    Article  CAS  Google Scholar 

  • Macaulay BM (2014) Understanding the behavior of oil-degrading microorganisms to enhance the microbial remediation of spilled petroleum. Appl Ecol Environ Res 13:247–262

    Google Scholar 

  • Madhavi GN, Mohini DD (2012) Review paper on parameters affecting bioremediation. Int J Life Sci Pharma Res 2:77–80

    Google Scholar 

  • Maila MP, Colete TE (2004) Bioremediation of petroleum hydrocarbons through land farming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Bio/Technol 3:349–360

    Article  CAS  Google Scholar 

  • Malik ZA, Ahmed S (2012) Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium. Afr J Biotechnol 11:650–658

    CAS  Google Scholar 

  • Mandenius C (2016) Challenges for bioreactor design and operation: in bioreactors: design, operation and novel applications, 1st edn. Wiley-VCH Verlag GmbH and Co. KGaA, pp 1–34

    Google Scholar 

  • Mao X, Wang J, Ciblak A, Cox EE, Riis C, Terkelsen M, Gent DB, Alshawabkeh AN (2012) Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay. J Hazard Mater 213–214:311–317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosco MJ, Zytner RG (2017) Large-scale bioventing degradation rates of petroleum hydrocarbons and determination of scale-up factors. Biorem J 21(3):149–162

    Article  Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 125–194

    Chapter  Google Scholar 

  • Mulligana CN, Yong RN (2004) Natural attenuation of contaminated soils. Environ Int 30:587–601

    Article  CAS  Google Scholar 

  • Niu GL, Zhang JJ, Zhao S, Liu H, Boon N, Zhou NY (2009) Bioaugmentation of a c4- chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environ Pollut 57:763–771

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    Article  PubMed Central  CAS  Google Scholar 

  • Paladino G, Arrigoni JP, Satti P, Morelli I, Mora V, Laos F (2016) Bioremediation of heavily hydrocarbon-contaminated drilling wastes by composting. Int J Environ Sci Technol 13:2227–2238

    Article  CAS  Google Scholar 

  • Paopo I (2014) Stem cell bioprocessing: bioreactor design and characterization by computational fluid dynamics and the differentiation of murine embryonic stem cells into the alveolar progenitor cells in sparged bioreactors. PhD Thesis, Biological System Engineering Laboratory, Chemical Engineering, Imperial College London, pp 1–258

    Google Scholar 

  • Phulia V, Jamwal A, Saxena N, Chadha NK, Muralidhar, Prusty A (2013) Technologies in aquatic bioremediation. In: Freshwater ecosystem and xenobiotics chapter: technologies in aquatic bioremediation. Discovery Publishing House Pvt. Ltd, New Delhi, India, pp 65–91

    Google Scholar 

  • Praharaj A (2012) Design of a perfusion bioreactor for simulating synovial joint cavity. Bachelor of Technology Thesis, Biomedical Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, pp 1–25

    Google Scholar 

  • Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AA (2007) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67:548–556

    Article  CAS  PubMed  Google Scholar 

  • Rahman Z, Singh VP (2020) Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ Sci Pollut Res 27:27563–27581

    Article  CAS  Google Scholar 

  • Rahman KSM, Thahira-Rahman J, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactants production by strains of Pseudomonas aeruginosa using low cost raw materials. Biotechnol Prog 18:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Rodrigues C, Núñez-Gómez D, Follmann HVDM, Silveira DD, Nagel-Hassemer ME, Lapolli FR, and Ángeles Lobo-Recio M (2020) Biostimulation of sulfate-reducing bacteria and metallic ions removal from coal mine-impacted water (MIW) using shrimp shell as treatment agent. 398:122893

    Google Scholar 

  • Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198

    Article  CAS  PubMed  Google Scholar 

  • Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55:167–173

    Article  Google Scholar 

  • Sarkar S, Mazumder D (2014) Feasibility of hybrid bioreactor in the treatment of wastewater containing slowly biodegradable substances. Int J Environ Sci 5(2):383–400

    Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    Article  CAS  PubMed  Google Scholar 

  • Shahsavari E, Poi G, Medina AA, Ball A (2017) Bioremediation approaches for petroleum hydrocarbon-contaminated environments. In: Anjum NA, Gill SS, Tuteja N (eds) Enhancing cleanup of environmental pollutants: volume 1: biological approaches. Springer International Publishing

    Google Scholar 

  • Silva-Castro GA, Uad I, Rodrıguez-Calvo A, Gonzalez-Lopez J, Calvo C (2015) Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environ Res 137:49–58

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Kaushik N, Biswas S (2014) Bioreactors–technology and design analysis. Scitech J 1(6):28–36

    Google Scholar 

  • Smith E, Thavamani P, Ramadass K, Naidu R, Srivastava P, Megharaj M (2015) Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. Int Biodeter Biodegr 101:56–65

    Article  CAS  Google Scholar 

  • Strong PJ, Burgess JE (2008) Treatment methods for wine-related and distillery wastewaters: a review. Biorem J 12:70–87

    Article  CAS  Google Scholar 

  • Sutar H, Das CK (2012) A review on: bioremediation. Int J Res Chem Environ 2:13–21

    CAS  Google Scholar 

  • Thapa B, Ajay Kumar KC, Ghimire A (2012) A review on bioremediation of petroleum hydrocarbon contaminants in soil. J Sci Eng Technol 8:164–170

    Google Scholar 

  • Tripathi A, Dixit S (2016) Bioremediation of phenolic compounds by higher fungi-a review. Int J Adv Res 4(7):14–35

    Article  CAS  Google Scholar 

  • Upadhyay MK, Yadav P, Shukla A, Srivastava S (2018) Utilizing the potential of microorganisms for managing arsenic contamination: a feasible and sustainable approach. Front Environ Sci 6:24

    Article  Google Scholar 

  • Verma JP, Jaiswal DK (2016) Book review: advances in biodegradation and bioremediation of industrial waste. Front Microbiol 6:1–2

    Article  Google Scholar 

  • von Fahnestock FM, Wickramanayake GB, Kratzke KJ, Major WR (1998) Biopile design, operation, and maintenance handbook for treating hydrocarbon contaminated soil. Battelle Press, Columbus

    Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zhang S, Li Y, Klassen W (2011) Potential approaches to improving biodegradation of hydrocarbons for bioremediation of crude oil pollution. Environ Protect J 2:47–55

    Article  CAS  Google Scholar 

  • Wang X, Zheng J, Han Z, Chen H (2019) Bioremediation of crude oil-contaminated soil by hydrocarbon-degrading microorganisms immobilized on humic acid-modified biofuel ash. Chem Technol Biotechnol 94(6):1904–1912

    Article  CAS  Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Zytner RG (2019) The effect of age on petroleum hydrocarbon contaminants in soil for bioventing remediation. Biorem J 23(4):311–325

    Article  CAS  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Wang B, Cao Z, Yu Y (2012) Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil. J Hazard Mater 221–222:178–184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohanty, I., Rath, A. (2020). Bioremediation: Current Research Trends and Applications. In: Kashyap, B.K., Solanki, M.K., Kamboj, D.V., Pandey, A.K. (eds) Waste to Energy: Prospects and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4347-4_5

Download citation

Publish with us

Policies and ethics