Skip to main content
Log in

Feruloyl esterase from Alternaria tenuissima that hydrolyses lignocellulosic material to release hydroxycinnamic acids

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

An extracellular feruloyl esterase from the culture filtrates of the isolated fungus Alternaria tenuissima was successfully purified to apparent homogeneity by anion-exchange and size-exclusion chromatography. Peptide fragments of purified enzyme (designated as AltFAE; molecular weight of 30.3 kDa determined by SDS-PAGE) were identified by mass spectrometry using a NanoLC-ESI-MS/MS system. Michaelis-Menten constants (KM) and catalytic efficiencies (kcat/KM) were determined for typical substrates of feruloyl esterase, and the lowest KM of 50.6 μM (i.e., the highest affinity) and the highest kcat/KM (3.1 × 105 s—1 M–1) were observed for methyl p-coumarate and methyl ferulate, respectively. Not least, AltFAE catalyzed conversion of lignocellulosic material (e.g. wood meal) to release hydroxycinnamic products, i.e. ferulic- and p-coumaric acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sipos, B., Benko, Z., Dienes, D., Reczey, K., Viikari, L., and Siika–aho M., Appl. Biochem. Biotechnol., 2010, vol. 161, no. 1, pp. 347–364.

    Article  CAS  PubMed  Google Scholar 

  2. Sorensen, H.R., Pedersen, S., and Meyer, A.S., Enzyme Microb. Technol., 2007, vol. 40, no. 4, pp. 908–918.

    Article  CAS  Google Scholar 

  3. Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat B., Nucleic Acids Res., 2009, vol. 37, pp. D233–D238.

    Article  CAS  PubMed  Google Scholar 

  4. Crepin, V.F. and Faulds, C.B., Appl. Microbiol. Biotechnol., 2004, vol. 63, no. 6, pp. 647–652.

    Article  CAS  PubMed  Google Scholar 

  5. Topakas, E., Vafiadi, C., and Christakopoulos, P., Process Biochem., 2007, vol. 42, no. 4, pp. 497–509.

    Article  CAS  Google Scholar 

  6. Lee, H.B., Patriarca, A., and Magan, N., Mycobiol., 2015, vol. 43, no. 2, pp. 93–106.

    Article  Google Scholar 

  7. Domsch, K.H., Gams, W., and Andersen, T.H., Compendium of Soil Fungi, New York: Academic Press, 1980.

    Google Scholar 

  8. Cwalina–Ambroziak, B. and Nowak, M.K., Acta Agrobot., 2011, vol. 64, no. 3, pp. 79–86.

    Article  Google Scholar 

  9. Roberts, P. and Evans, S., A Life-Size Guide to Six Hundred Species from Around the World, Chicago: University of Chicago Press, 2011.

    Google Scholar 

  10. Doyle, J.J. and Doyle, J.L., Phytochem. Bull., 1987, vol. 19, no. 1, pp. 11–15.

    Google Scholar 

  11. PCR Protocols: a Guide to Methods and Applications, New York: Academic Press, 1990, pp. 315–322.

  12. Faulds, C.B. and Williamson, G., Microbiology, 1994, vol. 140, no. 4, pp. 779–787.

    Article  CAS  Google Scholar 

  13. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  14. Tran, T.T. and Phan, V.C., Nanosci. Nanotechnol., 2008, vol. 1, no. 1, pp. 1–7.

    Google Scholar 

  15. Dung, N.T., Chi, D.H., Thao, T.H.B., Dung, N.T.D., Nhi, N.B., and Chi, P.V., J. Proteomics Bioinform., 2013, vol. 6, pp. 142–147.

    Google Scholar 

  16. Nghi, D.H., Ullrich, R., Moritz, F., Huong, L.M., Giap, V.D., and Chi, D.H., J. Korean Soci. Appl. Biol. Chem., 2015, vol. 58, no. 3, pp. 415–521.

    Article  CAS  Google Scholar 

  17. Wagner, U.G., Petersen, E.I., Schwab, H., and Kratky, C., Protein Sci., 2002, vol. 11, no. 3, pp. 467–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bompard-Gilles, C., Remaut, H., Villeret, V., Prangé, T., Fanuel, L., and Delmarcelle, M., Structure, 2000, vol. 8, no. 9, pp. 971–980.

    Article  CAS  PubMed  Google Scholar 

  19. Koseki, T., Furuse, S., Iwano, K., and Matsuzawa, H., Biosci. Biotechnol. Biochem., 1998, vol. 62, no. 10, pp. 2032–2034.

    Article  CAS  PubMed  Google Scholar 

  20. Shin, H.D. and Chen, R.R., Enzyme Microbiol. Technol., 2003, vol. 38, no. 3, pp. 478–485.

    Google Scholar 

  21. Topakas, E., Stamatis, H., Biely, P., Kekos, D., Macris, B.J., and Christakopoulos, P., J. Biotechnol., 2003, vol. 102, no. 1, pp. 33–44.

    Article  CAS  PubMed  Google Scholar 

  22. Rumbold, K, Biely, P., Mastihubova, M., Gudelj, M., Guebitz, G., and Robra, K.H., Appl. Envir. Microbiol., 2003, vol. 69, no. 9, pp. 5622–5626.

    Article  CAS  Google Scholar 

  23. Nghi, D.H., Bittner, B., Kellner, H., Jehmlich, N., Ullrich, R., and Pacyna, M.J., Appl. Environ. Microbiol., 2012, vol. 78, no.14, pp. 4893–4901.

    Article  CAS  PubMed Central  Google Scholar 

  24. Wang, L., Li, W., Zhu, M., Meng, L., Wang, H., and Bun, N.T., Int. J. Biol. Macromol., 2016, vol. 93, no. A, pp. 290–295.

    Article  CAS  PubMed  Google Scholar 

  25. Topakas, E., Stamatis, H., Biely, P., Kekos, D., Macris, B.J., and Christakopoulos, P., J. Biotechnol., 2003, vol. 102, no. 1, pp. 33–44.

    Article  CAS  PubMed  Google Scholar 

  26. Crepin, V.F., Faulds, C.B., and Connerton, I.F., Appl. Microbiol. Biotechnol., 2004, vol. 63, no. 6, pp. 567–570.

    Article  CAS  PubMed  Google Scholar 

  27. Koseki, T., Fushinobu, S., Ardiansyah., Shirakawa H., and Komai, M., Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 5, pp. 803–810.

    Article  CAS  PubMed  Google Scholar 

  28. Kroon, P.A., Williamson, G., Fish, N.M., Archer, D.B., and Belshaw, N.J., Eur. J. Biochem., 2000, vol. 267, no. 23, pp. 6740–6752.

    Article  CAS  PubMed  Google Scholar 

  29. Topakas, E., Stamatis, H., Biely, P., Kekos, D., Macris, B.J., J. Biotechnol., 2003, vol. 102, no. 1, pp. 33–44.

    Article  CAS  PubMed  Google Scholar 

  30. Castanares, A., McCrae, S. I., and Wood, T.M., Enzyme Microb. Technol., 1992, vol. 14, no. 11, pp. 875–884.

    Article  CAS  Google Scholar 

  31. Kroon, P.A., Faulds, C.B., and Williamson, G., Biotechnol. Appl. Biochem., 1996, vol. 23, no. 3, pp. 255–262.

    CAS  PubMed  Google Scholar 

  32. Manach, C., Scalbert, A., Morand, C., Rémésy, C., and Jiménez, L., J. Clin. Nutr., 2004, vol. 79, no. 5, pp. 727–747.

    CAS  Google Scholar 

  33. Razzaghi–Asl, N., Garrido, J., Khazraei, H., Borges, F., and Firuzi, O., Curr. Med. Chem., 2013, vol. 20, no. 36, pp. 4436–4450.

    Article  PubMed  Google Scholar 

  34. Benoit, I., Navarro, D., Marnet, N., Rakotomanomana, N., and Lesage-Meessen, L., Carbohydr. Res., 2006, vol. 341, no. 11, pp. 1820–1827.

    Article  CAS  PubMed  Google Scholar 

  35. Gopalan, N., Rodríguez-Duran, L.V., Saucedo-Castaneda, G., and Nampoothiri, K.M., Bioresour. Technol., 2015, vol. 193, pp. 534–544.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. Nghi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, D.H., Giap, V.D., Anh, L.P.H. et al. Feruloyl esterase from Alternaria tenuissima that hydrolyses lignocellulosic material to release hydroxycinnamic acids. Appl Biochem Microbiol 53, 654–660 (2017). https://doi.org/10.1134/S0003683817060047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817060047

Keywords

Navigation