Skip to main content
Log in

Salt stress response in Arabidopsis thaliana plants with defective jasmonate signaling

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effects of exogenous jasmonic acid (JA) on antioxidant enzymes in four-week-old leaves of wild-type Arabidopsis thaliana L. (Columbia-0) and jin1 (jasmonate insensitive 1) mutant plants with defective jasmonate signaling were investigated under normal conditions and under salt stress (200 mM NaCl, 24 h). The wild-type plants responded to JA by an increase in the activities of Cu/Zn superoxide dismutase, catalase, and guaiacol peroxidase, while there was no change in the case of the mutant plants. In response to the salt stress of both the wild-type and mutant genotypes, the activities of superoxide dismutase, catalase, and guaiacol peroxidase were unchanged, decreased, and increased, respectively. The JA-treated wild type plants showed the highest activity of all three enzymes as compared with the mutant plants. Salinity caused a decrease in chlorophyll content in the wild-type and jin1 plants. Preliminary JA treatment of the Col-0 plants resulted in a normal content of photosynthetic pigments after the salt stress, while the positive JA effect was insignificant in the jin1 mutants. It was concluded that the MYC2/JIN1 protein is involved in the JA signal transduction and plant adaptation to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wasternack, C., Ann. Bot., 2007, vol. 100, no. 4, pp. 681–697.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Vasyukova, N.I. and Ozeretskovskaya, O.L., Fiziol. Rast., 2011, vol. 56, no. 5, pp. 643–653.

    Google Scholar 

  3. Santino, A., Taurino, M., De Domenico, S., Bonsegna, S., Poltronieri, P., Pastor, V., and Flors, V., Plant Cell Rep., 2013, vol. 32, no. 7, pp. 1085–1098.

    Article  CAS  PubMed  Google Scholar 

  4. Xie, D.Xi., Feys, B.F., James, S., Nieto-Rostro, M., and Turner, J.G., Science, 1998, vol. 280, no. 5366, pp. 1091–1094.

    Article  CAS  PubMed  Google Scholar 

  5. Kazan, K. and Manners, J.M., Plant Physiol., 2008, vol. 146, no. 4, pp. 1459–1468.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ismail, A., Riemann, M., and Nick, P., J. Exp. Bot., 2012, vol. 63, no. 5, pp. 2127–2139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pedranzani, H., Racagni, G., Alemano, S., Miersch, O., Ramirez, I., Pena-Cortes, H., Taleisnik, E., MachadoDomenech, E., and Abdala, G., Plant Growth Regul., 2003, vol. 41, no. 2, pp. 149–158.

    Article  CAS  Google Scholar 

  8. Javid, M.G., Sorooshzadeh, A., Moradi, F., Sanavy, S.A.M.M., and Allahdadi, I., Austral. J. Crop. Sci., 2011, vol. 5, no. 6, pp. 726–734.

    CAS  Google Scholar 

  9. Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A.M., and Close, T.J., Plant Cell Environ., 2007, vol. 30, no. 4, pp. 410–421.

    Article  CAS  PubMed  Google Scholar 

  10. Shakirova, F.M., Sakhabutdinova, A.R., Ishdavletova, R.S., and Lastochkina, O.V., Agrokhimiya, 2010, no. 7, pp. 26–32.

    Google Scholar 

  11. Sheteawi, S.A., Int. J. Agri. Biol., 2007, vol. 9, no. 3, pp. 473–478.

    CAS  Google Scholar 

  12. Fedina, I., Nedeva, D., Georgieva, K., and Velitchkova, M., J. Agron. Crop Sci., 2009, vol. 195, no. 3, pp. 204–212.

    Article  CAS  Google Scholar 

  13. Keramat, B., Kalantari, K.M., and Arvin, M.J., Afr. J. Microbiol. Res., 2009, vol. 3, no. 5, pp. 240–244.

    CAS  Google Scholar 

  14. Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A., and Oboznyi, A.I., Russ. J. Plant Physiol., 2014, vol. 61, no. 3, pp. 339–346.

    Article  CAS  Google Scholar 

  15. Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K., Plant Cell, 2007, vol. 19, no. 7, pp. 2225–2245.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J., and Solano, R., Plant Cell, 2004, vol. 16, no. 7, pp. 1938–1950.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gibeaut, D.M., Hulett, J., Cramer, G.R., and Seemann, J.R., Plant Physiol., 1997, vol. 115, no. 2, pp. 317–319.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Semchuk, N.M., Vasylyk, Yu.V., Lushchak, Ok.V., and Lushchak, V.I., Ukr. Biokhem. Zh., 2012, vol. 84, no. 4, pp. 41–48.

    CAS  Google Scholar 

  19. Alscher, R.G., Erturk, N., and Heath, L.S., J. Exp. Bot., 2002, vol. 53, no. 372, pp. 1331–1341.

    Article  CAS  PubMed  Google Scholar 

  20. Shlyk, A.A., Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Pavlinov, O.A., Ed., Moscow: Nauka, 1971.

  21. Santos, C.V., Sci. Horticult., 2004, vol. 103, no. 1, pp. 93–99.

    Article  CAS  Google Scholar 

  22. Soares, A.M.S., Souza, T.F., Jacinto, T., and Machado, O.L.T., Braz. J. Plant Physiol., 2010, vol. 22, no. 3, pp. 151–158.

    Article  Google Scholar 

  23. Yarullina, L.G., Troshina, N.B., Cherepanova, E.A., Zaikina, E.A., and Maksimov, I.V., Appl. Biochem. Microbiol., 2011, vol. 47, no. 5, pp. 549–555.

    Article  CAS  Google Scholar 

  24. Sasaki-Sekimoto, Y., Taki, N., Obayashi, T., Aono, M., Matsumoto, F., Sakurai, N., Suzuki, H., Hirai, Y.M., Noji, M., Saito, K., Masuda, T., Takamiya, K.I., Shibata, D., and Ohta, H., Plant J., 2005, vol. 44, no. 4, pp. 653–668.

    Article  CAS  PubMed  Google Scholar 

  25. Wolucka, B.A., Goossens, A., and Inze, D., J. Exp. Bot., 2005, vol. 56, no. 419, pp. 2527–2538.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. O. Yastreb.

Additional information

Original Russian Text © T.O. Yastreb, Yu.E. Kolupaev, N.V. Shvidenko, A.A. Lugovaya, A.P. Dmitriev, 2015, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2015, Vol. 51, No. 4, pp. 412–416.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yastreb, T.O., Kolupaev, Y.E., Shvidenko, N.V. et al. Salt stress response in Arabidopsis thaliana plants with defective jasmonate signaling. Appl Biochem Microbiol 51, 451–454 (2015). https://doi.org/10.1134/S000368381504016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368381504016X

Keywords

Navigation