Skip to main content
Log in

The engineering of a Yarrowia lipolytica yeast strain capable of homologous recombination of the mitochondrial genome

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

None of the studied eukaryotic species has a natural system for homologous recombination of the mitochondrial genome. We propose an integrated genetic construct pQ-SRUS, which allows introduction of the recA gene from Bacillus subtilis into the nuclear genome of an extremophilic yeast, Yarrowia lipolytica. The targeting of recombinant RecA to the yeast mitochondria is provided by leader sequences (5′-UTR and 3′-UTR) derived from the SOD2 gene mRNA, which exhibits affinity to the outer mitochondrial membrane and thus provides cotranslational transport of RecA to the inner space of the mitochondria. The Y. lipolytica strain bearing the pQ-SRUS construct has the unique ability to integrate DNA constructs into the mitochondrial genome. This fact was confirmed using a tester construct, pQ-NIHN, intended for the introduction of the EYFP gene into the translation initiation region of the Y. lipolytica ND1 mitochondrial gene. The Y. lipolytica strain bearing pQ-SRUS makes it possible to engineer recombinant producers based on Y. lipolytica bearing transgenes in the mitochondrial genome. They are promising for the construction of a genetic system for in vivo replication and modification of the human mitochondrial genome. These strains may be used as a tool for the treatment of human mitochondrial diseases (including genetically inherited ones).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aanen, D.K., Spelbrink, J.N., and Beekman, M., Philos Trans. R Soc. Lond. B Biol. Sci., 2014, vol. 369, no. 1646, p. 20130438. doi: 10.1098/rstb.2013.0448

    Article  PubMed  Google Scholar 

  2. Chattopadhyay, K. and Aldous, C., Mitochondrial DNA, 2014. doi: 10.3109/19401736.2014.958728.

    Google Scholar 

  3. Zbawicka, M., Wenne, R., and Burzynski, A., Mol. Genet. Genomics, 2014. doi: 10.1007/s00438-014-0888-3

    Google Scholar 

  4. Gerhold, J.M., Sedman, T., Visacka, K., Slezakova, J., Tomaska, L., Nosek, J., and Sedman, J., J. Biol. Chem., 2014, vol. 289, no. 33, pp. 22659–22670.

    Article  CAS  PubMed  Google Scholar 

  5. Salavirta, H., Oksanen, I., Kuuskeri, J., Makela, M., Laine, P., Paulin, L., and Lundell, T., PLoS One, 2014, vol. 9, no. 5. doi: 10.1371/journal.pone.0097141

    Google Scholar 

  6. Fritsch, E.S., Chabbert, C.D., Klaus, B., and Steinmetz, L.M., Genetics, 2014, vol. 198, no. 2, pp. 755–771.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Wang, X., Mbantenkhu, M., Wierzbicki, S., and Chen, X.J., J. Vis. Exp., 2013, vol. 76. doi: 10.3791/50448

  8. Rai, J., Pemmasani, J.K., Voronovsky, A., Jensen, I.S., Manavalan, A., Nyengaard, J.R., Golas, M.M., and Sander, B., Mol. Biotechnol., 2014, vol. 56, no. 11, pp. 992–1003.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, J., Sneeden, J., and Heyer, W.D., Methods Mol. Biol., 2011, vol. 745, pp. 363–383.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Paul, R., Dalibart, R., Lemoine, S., and Lestienne, P., Mutat. Res., 2001, vol. 486, no. 1, pp. 11–19.

    Article  CAS  PubMed  Google Scholar 

  11. Edmondson, A.C., Song, D., Alvarez, L.A., Wall, M.K., Almond, D., McClellan, D.A., Maxwell, A., and Nielsen, B.L., Mol. Genet. Genomics, 2005, vol. 273, no. 2, pp. 115–122.

    Article  CAS  PubMed  Google Scholar 

  12. Williams, L.R., Ellis, S.R., Hopper, A.K., Davis, E.O., and Martin, N.C., FEBS Lett., 2000, vol. 476, no. 3, pp. 301–305.

    Article  CAS  PubMed  Google Scholar 

  13. Kaltimbacher, V., Bonnet, C., Lecoeuvre, G., Forster, V., Sahel, J.A., and Corral-Debrinski, M., RNA, 2006, vol. 12, no. 7, pp. 1408–1417.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Davidow, L.S., Apostolakos, D., O’Donnell, M.M., Proctor, A.R., Ogrydziak, D.M., Wing, R.A., Stasko, I., and DeZeeuw, J.R., Curr. Genet., 1985, vol. 10, pp. 39–48.

    Article  CAS  Google Scholar 

  15. Hentschel, E., Will, C., Mustafi, N., Burkovski, A., Rehm, N., and Frunzke, J., Microb. Biotechnol., 2013, vol. 6, no. 2, pp. 196–201.

    Article  PubMed Central  PubMed  Google Scholar 

  16. RF Patent No. 2376376, 2006.

  17. Matsuyama, A., Shirai, A., and Yoshida, M., Biochem. Biophys. Res. Commun., 2008, vol. 374, no. 2, pp. 315–319.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Isakova.

Additional information

Original Russian Text © E.P. Isakova, E.Yu. Epova, V.Yu. Sekova, E.V. Trubnikova, Yu.K. Kudykina, M.V. Zylkova, M.A. Guseva, Yu.I. Deryabina, 2015, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2015, Vol. 51, No. 3, pp. 319–325.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isakova, E.P., Epova, E.Y., Sekova, V.Y. et al. The engineering of a Yarrowia lipolytica yeast strain capable of homologous recombination of the mitochondrial genome. Appl Biochem Microbiol 51, 336–341 (2015). https://doi.org/10.1134/S0003683815030096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815030096

Keywords

Navigation