Skip to main content
Log in

On the Dirichlet–Riquier problem for biharmonic equations

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The existence of a solution of the Dirichlet–Riquier problem for a homogeneous biharmonic equation in the unit ball with boundary operators up to third order containing normal derivatives and the Laplacian is studied. Existence theorems for the solutions of the problem are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.-E. Andersson, T. Elfving, and G. H. Golub, “Solution biharmonic equations with application to radar imaging,” J. Comput. Appl. Math. 94 (2), 153–180 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  2. M.-C. Lai and H.-C. Liu, “Fast direct solver for the biharmonic equation for a disk and its application to incompressible flows,” Appl. Math. Comput. 164 (3), 679–695 (2005).

    MATH  MathSciNet  Google Scholar 

  3. L. N. Ehrlich and M. M. Gupta, “Some difference schemes for the biharmonic equation,” SIAM J. Numer. Anal. 12 (5), 773–790 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. H. A. Ali and K. R. Raslan, “Variational iteration method for solving biharmonic equations,” Phys. Lett. A 370 (5-6), 441–448 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Bjorstad, “Fast numerical solution of the biharmonic Dirichlet problem on rectangles,” SIAM J. Numer. Anal. 20 (1), 59–71 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  6. Q. A. Dang, “Iterative method for solving the Neumann boundary-value problem for biharmonic type equation,” J. Comput. Appl. Math. 196 (2), 634–643 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  7. Q. A. Dang and X. T. Mai, “Iterative method for solving a problem with mixed boundary conditions for biharmonic equation arising in fracture mechanics,” Bol. Soc. Parana. Mat. (3) 31 (1), 65–78 (2013).

    MathSciNet  Google Scholar 

  8. E. Almansi, “Sull’integrazione dell’equazione differenziale Δ2n u = 0,” Ann. Mat. Pura Appl. (3) 2 (1), 1–51 (1899).

    Article  MATH  Google Scholar 

  9. T. Boggio, “Sulle funzioni di Green d’ordine m,” Rend. Circ. Mat. Palermo 20, 97–135 (1905).

    Article  MATH  Google Scholar 

  10. A. E. H. Love, “Biharmonic analysis, especially in a rectangle and its application to the theory of elasticity,” J. London Math. Soc. 3 (2), 144–156 (1928).

    Article  MathSciNet  Google Scholar 

  11. S. Zaremba, “Sur l’integration de l’equation biharmonique,” Bull. Acad. Sci. Cracovie, 1–29 (1908).

    Google Scholar 

  12. C. Miranda, “Formule di maggiorazione e teorema di esistenza per le funzioni biarmoniche de due variabili,” Giorn. Mat. Battaglini (4) 2 (78), 97–118 (1948).

    MATH  MathSciNet  Google Scholar 

  13. D. D. Joseph and L. Sturgers, “The convergence of biorthogonal series for biharmonic and Stokes flow edge problems. II,” SIAM J. Appl. Math. 34 (1), 7–26 (1978).

    Article  MathSciNet  Google Scholar 

  14. V. V. Karachik, “On an expansion of Almansi type,” Mat. Zametki 83 (3), 370–380 (2008) [Math. Notes 83 (3–4), 335–344 (2008)].

    Article  MATH  MathSciNet  Google Scholar 

  15. V. V. Karachik and N. A. Antropova, “Polynomial solutions of the Dirichlet problem for the biharmonic equation in the ball,” Differ. Uravn. 49 (2), 250–254 (2013) [Differ. Equations 49 (2), 251–256 (2013)].

    MATH  MathSciNet  Google Scholar 

  16. V. V. Karachik, “Construction of polynomial solutions to the Dirichlet problem for the polyharmonic equation in a ball,” Zh. Vychisl. Mat. Mat. Fiz. 54 (7), 1149–1170 (2014) [Comput. Math. Math. Phys. 54 (7), 1122–1143 (2014)].

    MATH  MathSciNet  Google Scholar 

  17. V. V. Karachik, “Normalized system of the functions with respect to the Laplace operator and its applications,” J. Math. Anal. Appl. 287 (2), 577–592 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  18. O. A. Matevosyan, “On solutions of the Neumann problem for the biharmonic equation in unbounded domains,” Mat. Zametki 98 (6), 944–947 (2015) [Math. Notes 98 (5–6), 990–994 (2015)].

    Article  MathSciNet  Google Scholar 

  19. G. C. Verchota, “The biharmonic Neumann problem in Lipschitz domains,” Acta Math. 194 (2), 217–279 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Gómez-Polanco, J. M. Guevara-Jordan, and B. Molina, “A mimetic iterative scheme for solving biharmonic equations,” Math. Comput. Modelling 57 (9-10), 2132–2139 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Gazzola, H.-Ch. Grunau, and G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher-Order Elliptic Equations in Bounded Domains, in Lecture Notes in Math. (Springer-Verlag, Berlin, 2010), Vol. 1991.

    Google Scholar 

  22. B. D. Koshanov, “About solvability of boundary value problems for the nonhomogeneous polyharmonic equation in a ball,” Adv. Pure Appl. Math. 4 (4), 351–373 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. S. Berdyshev, A. Cabada, and B. Kh. Turmetov, “On solvability of a boundary value problem for a nonhomogeneous biharmonic equation with a boundary operator of a fractional order,” Acta Math. Sci. Ser. B Engl. Ed. 34 (6), 1695–1706 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  24. V. V. Karachik, B. Kh. Turmetov, and B. T. Torebek, “On some integro-differential operators in the class of harmonic functions and their applications,” Mat. Tr. 14 (1), 99–125 (2011) [Sib. Adv. Math. 22 (2), 115–134 (2012)].

    MATH  Google Scholar 

  25. V. V. Karachik, M. A. Sadybekov, and B. T. Torebek, “Uniqueness of solutions to boundary-value problems for the biharmonic equation in a ball”, Electron. J. Differential Equations 2015 (244) (2015).

    Google Scholar 

  26. S. L. Sobolev, Introduction to the Theory of Cubuture Formulas (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  27. J. Pipher and G. Verchota, “Area integral estimates for the biharmonic operator in Lipschitz domains,” Trans. Amer. Math. Soc. 327 (2), 903–917 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Buoso and L. Provenzano, “A few shape optimization results for a biharmonic Steklov problem,” J. Differential Equations 259 (5), 1778–1818 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  29. V. V. Karachik, “Construction of polynomial solutions to some boundary-value problems for Poisson’s equation,” Zh. Vychisl. Mat. Mat. Fiz. 51 (9), 1674–1694 (2011) [Comput. Math. Math. Phys. 51 (9), 1588–1587 (2011)].

    MATH  MathSciNet  Google Scholar 

  30. V. V. Karachik, “A problem for a polyharmonic equation in a ball,” Sibirsk. Mat. Zh. 32 (5), 51–58 (1991) [Sib. Math. J. 32 (5), 767–774 (1991)].

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Karachik.

Additional information

Original Russian Text © V. V. Karachik, B. T. Torebek, 2017, published in Matematicheskie Zametki, 2017, Vol. 102, No. 1, pp. 39–51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karachik, V.V., Torebek, B.T. On the Dirichlet–Riquier problem for biharmonic equations. Math Notes 102, 31–42 (2017). https://doi.org/10.1134/S0001434617070045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434617070045

Keywords

Navigation