Skip to main content
Log in

Robust controlling of chaotic behavior in supply chain networks

  • Published:
Journal of the Operational Research Society

Abstract

The supply chain network is a complex nonlinear system that may have a chaotic behavior. This network involves multiple entities that cooperate to meet customers demand and control network inventory. Although there is a large body of research on measurement of chaos in the supply chain, no proper method has been proposed to control its chaotic behavior. Moreover, the dynamic equations used in the supply chain ignore many factors that affect this chaotic behavior. This paper offers a more comprehensive modeling, analysis, and control of chaotic behavior in the supply chain. A supply chain network with a centralized decision-making structure is modeled. This model has a control center that determines the order of entities and controls their inventories based on customer demand. There is a time-varying delay in the supply chain network, which is equal to the maximum delay between entities. Robust control method with linear matrix inequality technique is used to control the chaotic behavior. Using this technique, decision parameters are determined in such a way as to stabilize network behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Bearzotti LA, Salomone E and Chiotti OJ (2012). An autonomous multi-agent approach to supply chain event management. International Journal of Production Economics 135(1), 468–478.

    Article  Google Scholar 

  • Boyd S, Ghaoui LE, Feron E and Balakrishnan V (1994). Linear Matrix Inequalities in Systems and Control Theory. SIAM: Philadelphia, PA.

    Book  Google Scholar 

  • Chen L and Chen GR (2000). Fuzzy modeling, prediction, and control of uncertain chaotic systems based on time series. IEEE Transactions on Circuits and Systems I 47(10), 1527–1531.

    Article  Google Scholar 

  • Chen F and Zhang W (2007). LMI criteria for robust chaos synchronization of a class of chaotic systems. Nonlinear Analysis 67(12), 3384–3393.

    Article  Google Scholar 

  • Chiang TY, Hung ML, Yan JJ, Yang YS and Chang JF (2007). Sliding mode control for uncertain unified chaotic system with input nonlinearity. Chaos, Solitons & Fractals 34(2), 437–442.

    Article  Google Scholar 

  • Dadras S and Momeni HR (2010). Control of a fractional-order economical system via sliding mode. Physica A 389(12), 2434–2442.

    Article  Google Scholar 

  • Daganzo CF (2003). A Theory of Supply Chains. Springer: Heidelberg.

    Book  Google Scholar 

  • Daganzo CF (2004). On the stability of supply chain. Operations Research 52(6), 909–921.

    Article  Google Scholar 

  • Dejonckheere J, Disney SM, Lambrecht MR and Towil DR (2002). Transfer function analysis of forecasting induced bullwhip in supply chain. International Journal of Production Economics 78(2), 133–144.

    Article  Google Scholar 

  • Dejonckheere J, Disney SM, Lambrecht MR and Towill DR (2003). Measuring and avoiding the bullwhip effect: A control theoretic approach. European Journal of Operational Research 147(3), 567–590.

    Article  Google Scholar 

  • Disney SM, Farasyn I, Lambrecht SM, Towill DR and Van de Velde W (2006). Taming the bullwhip effect whilst watching customer service in a single echelon of supply chain. European Journal of Operational Research 173(1), 151–172.

    Article  Google Scholar 

  • Disney SM and Towill DR (2003). The effect of vender managed inventory (VMI) dynamics on the bullwhip effect in supply chains. International Journal of Production Economics 85(2), 199–215.

    Article  Google Scholar 

  • Du J, Huang T, Sheng Z and Zhang H (2010). A new method to control chaos in an economic system. Applied Mathematics and Computation 217(6), 2370–2380.

    Google Scholar 

  • Forrester JW (1961). Industrial Dynamics. MIT Press: Cambridge.

    Google Scholar 

  • Fradkov AL and Evans RJ (2005). Control of chaos: Methods and applications in engineering. Annual Reviews in Control 29(1), 33–56.

    Article  Google Scholar 

  • Goksu A, Kocamaz UE and Uyaroglu Y (2015). Synchronization and control of a chaos in supply chain management. Computers & Industrial Engineering 86, 107–115.

    Article  Google Scholar 

  • Holyst JA and Urbanowicz K (2000). Chaos control in economical model by time-delayed feedback method. Physica A 287(3), 587–598.

    Article  Google Scholar 

  • Hu HY (1997). An adaptive control scheme for recovering periodic motion of chaotic systems. Journal of Sound and Vibration 199(2), 269–274.

    Article  Google Scholar 

  • Hwarng HB and Xie N (2008). Understanding supply chain dynamics: A chaos perspective. European Journal of Operational Research 184(3), 1163–1178.

    Article  Google Scholar 

  • Ivanov D and Sokolov B (2013). Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty. European Journal of Operational Research 224(2), 313–323.

    Article  Google Scholar 

  • Jarmain WE (1963). Problems in Industrial Dynamics. MIT Press: Cambridge.

    Google Scholar 

  • Jarsulic M (1993). A nonlinear model of the pure growth cycle. Journal of Economic Behavior & Organization 22(2), 133–151.

    Article  Google Scholar 

  • Kiss IZ and Gaspar V (2000). Controlling chaos with artificial neural network: Numerical studies and experiments. The Journal of Physical Chemistry A 104(34), 8033–8037.

    Article  Google Scholar 

  • Larsen ER, Morecroft JDW and Thomsen JS (1999) Complex behavior in a production–distribution model. European Journal of Operational Research 119(1), 61–74.

    Article  Google Scholar 

  • Lee HL, Padmanabhan V and Whang SJ (1997). The bullwhip effect in supply chains. Sloan Management Review 38(3), 93–102.

    Google Scholar 

  • Li X, Xu W and Li V (2009). Chaos synchronization of the energy resourse system. Chaos, Solitons & Fractals 40(2), 642–652.

    Article  Google Scholar 

  • Marra M, Ho W and Edwards JS (2012). Supply chain knowledge management: A literature review R. Expert Systems with Applications 39(5), 6103–6110.

    Article  Google Scholar 

  • Matsumoto A (2001). Can inventory chaos be welfare improving. International Journal of Production Economics 71(1–3), 31–43.

    Article  Google Scholar 

  • Mosekilde E and Larsen ER (1988). Deterministic chaos in the beer production-distribution system. System Dynamics Review 4(1), 131–147.

    Article  Google Scholar 

  • Nesterov Y and Nemirovski A (1994). Interior Point Polynomial Methods in Convex Programming: Theory and Applications. SIAM: PA, Philadelphia.

    Book  Google Scholar 

  • Ott E, Grebogi C and Yorke J (1990). Controlling chaos. Physical Review Letters 64(11), 1196–1199.

    Article  Google Scholar 

  • Ouyang Y and Daganzo CF (2006a). Characterization of the bullwhip effect in linear, time-invariant supply chains: some formulae and tests. Management Science 52(10), 1544–1556.

    Article  Google Scholar 

  • Ouyang Y and Daganzo CF (2006b). Counteracting the bullwhip effect with decentralized negotiations and advance demand information. Physica A 363(1), 14–23.

    Article  Google Scholar 

  • Ouyang Y and Li X (2010). The bullwhip effect in supply chain networks. European Journal of Operational Research 201(3), 799–810.

    Article  Google Scholar 

  • Petersen IR (1987). A stabilization algorithm for a class of uncertain linear systems. Systems & Control Letters 8(4), 351–357.

    Article  Google Scholar 

  • Pyragas K (1992). Continuous control of chaos by self-controlling feedback. Physics Letters A 170(6), 421–428.

    Article  Google Scholar 

  • Qiang Q, Ke K, Anderson T and Dong J (2013). The closed-loop supply chain network with competition, distribution channel investment, and uncertainties. Omega 41(2), 186–194.

    Article  Google Scholar 

  • Salarieh H and Alasty A (2008). Delayed feedback control via minimum entropy strategy in an economic model. Physica A 387(4), 851–860.

    Article  Google Scholar 

  • Salarieh H and Alasty A (2009). Chaos control in an economic model via minimum entropy strategy. Chaos, Solitons & Fractals 40(2), 839–847.

    Article  Google Scholar 

  • Salcedo CAG, Hernandez AI, Vilanova R and Cuartas JH (2013). Inventory control of supply chain: Mitigating the bullwhip effect by centralized and decentralized internal model control approach. European Journal of Operational Research 224(2), 261–272.

    Article  Google Scholar 

  • Song Q and Wang Z (2007). A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with time-varying delays. Physica Letter A 368(1–2), 134–145.

    Article  Google Scholar 

  • Sosnotseva O and Mosekilde E (1997). Torus destruction and chaos–chaos intermittency in a commodity distribution chain. International Journal of Bifurcation and Chaos 7(6), 1225–1242.

    Article  Google Scholar 

  • Sprott JC (2003). Chaos and Time-Series Analysis. Oxford University Press: Oxford.

    Google Scholar 

  • Sterman JD (1989). Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment. Management Science 35(3), 321–339.

    Article  Google Scholar 

  • Tarokh MJ, Dabiri N, Shokouhi AH and Shafiei H (2011). The effect of supply network configuration on occurring chaotic behavior in the retailer’s inventory. Journal of Industrial Engineering International 7(14), 19–28.

    Google Scholar 

  • Thomsen JS, Mosekilde E and Sterman JD (1992). Hyper chaotic phenomena in dynamic decision making. Systems Analysis Modelling Simulation 9(2), 137–156.

    Google Scholar 

  • Wang XF and Chen GR (2000). Chaotification via arbitrarily small feedback control: Theory, method, and applications. International Journal of Bifurcation and Chaos 10(3), 549–570.

    Article  Google Scholar 

  • Wang Z (2010). Chaos synchronization of an energy resource system based on linear control. Nonlinear Analysis: Real World Applications 11(5), 3336–3343.

    Article  Google Scholar 

  • Wang Z, Ho DWC, Liu Y and Liu X (2009). Robust H∞ control for a class of nonlinear discrete time-delay stochastic systems with missing measurements. Automatica 45(3), 684–691.

    Article  Google Scholar 

  • Wiggins S (1990). Introduction to Applied Nonlinear Dynamical Systems. Springer: NewYork.

    Book  Google Scholar 

  • Williams GP (1997). Chaos Theory Tamed. Taylor & Francis: Landon.

    Google Scholar 

  • Wu Y and Zhang DZ (2007). Demand fluctuation and chaotic behavior by interaction between customers and suppliers. International Journal of Production Economics 107(1), 250–259.

    Article  Google Scholar 

  • Wu YR, Huatuco LH, Frizelle G and Smart J (2013). A method for analyzing operational complexity in supply chains. Journal of the Operational Research Society 64(5), 654–667.

    Article  Google Scholar 

  • Yu Y (2008). Adaptive synchronization of a unified chaotic system. Chaos, Solitons & Fractals 36(2), 329–333.

    Article  Google Scholar 

  • Zhang B, Xu S and Zou Y (2008). Improved delay-dependent exponential stability criteria for discrete-time recurrent neural networks with time-varying delays. Neurocomputing 72(1), 321–330.

    Article  Google Scholar 

  • Zhao X, Li Z and Li S (2011). Synchronization of a chaotic finance system. Applied Mathematics and Computation 217(13), 6031–6039.

    Google Scholar 

  • Zhengguang W, Hongye S, Jian C and Wuneng Z (2009). New results on robust exponential stability for discrete recurrent neural networks with time-varying delays. Neurocomputing 72(13–15), 3337–3342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Norouzi Nav.

Appendices

Appendix 1: Proof of Theorem 1

Consider the following Lyapunov–Krasovskii functional candidate for the system (22):

$$ V(t) = \sum\limits_{i = 1}^{5} {V_{i} (t)} , $$
(39)

where

$$ V_{1} (t) = y^{T} (t)Py(t), $$
(40)
$$ V_{2} (t) = \sum\limits_{i = t - \tau (t)}^{t - 1} {y^{T} (i)Qy(i)} , $$
(41)
$$ V_{3} (t) = \sum\limits_{{j = t - \tau_{2} + 1}}^{{t - \tau_{1} }} {\sum\limits_{i = j}^{t - 1} {y^{T} (i)Qy(i)} } , $$
(42)
$$ V_{4} (t) = \sum\limits_{{i = t - t_{2} }}^{t - 1} {y^{T} (i)Ry(i)} , $$
(43)
$$ V_{5} (t) = \tau_{2} \sum\limits_{{j = - \tau_{2} }}^{ - 1} {\sum\limits_{i = t + j}^{t - 1} {\eta^{T} (i)Z} } \eta (i),\begin{array}{*{20}c} {} \\ \end{array} \eta (t) = y(t + 1) - y(t). $$
(44)

Define ΔV(t) = V(t + 1) − V(t). Then, along the solution of system (20), it is obtained

$$ \Delta V(t) = \sum\limits_{i = 1}^{5} {\Delta V_{i} (t)} , $$
(45)

where

$$ \begin{aligned} \Delta V_{1} (t) & = y^{T} (t + 1)Py(t + 1) - y^{T} (t)Py(t) \\ & = y^{T} (t)(A^{T} PA - P)y(t) + 2y^{T} (t)A^{T} PBg(y(t)) + 2y^{T} (t)A^{T} PCg_{d} (y(t - \tau (t)) \\ & \quad + g^{T} (y(t))B^{T} PBg(y(t)) + 2g^{T} (y(t))B^{T} PCg_{d} (y(t - \tau (t)) \\ & \quad + g_{d}^{T} (y(t - \tau (t))C^{T} PCg_{d} (y(t - \tau (t)), \\ \end{aligned} $$
(46)
$$ \begin{aligned} \Delta V_{2} (t) & = \sum\limits_{i = t + 1 - \tau (t + 1)}^{t} {y^{T} (i)Qy(i)} - \sum\limits_{i = t - \tau (t)}^{t - 1} {y^{T} (i)Qy(i)} \\ & = \sum\limits_{i = t + 1 - \tau (t + 1)}^{{t - \tau_{1} }} {y^{T} (i)Qy(i)} + \sum\limits_{{i = t - \tau_{1} + 1}}^{t - 1} {y^{T} (i)Qy(i)} + y^{T} (t)Qy(t) \\ & \quad - \sum\limits_{i = t - \tau (t) + 1}^{t - 1} {y^{T} (i)Qy(i)} - y^{T} (t - \tau (t))Qy(t - \tau (t)) \\ & \le \sum\limits_{i = t + 1 - \tau (t + 1)}^{{t - \tau_{1} }} {y^{T} (i)Qy(i)} + y^{T} (t)Qy(t) - y^{T} (t - \tau (t))Qy(t - \tau (t)) \\ & \le \sum\limits_{{i = t + 1 - \tau_{2} }}^{{t - \tau_{1} }} {y^{T} (i)Qy(i)} + y^{T} (t)Qy(t) - y^{T} (t - \tau (t))Qy(t - \tau (t)), \\ \end{aligned} $$
(47)
$$ \begin{aligned} \Delta V_{3} (t) & = \sum\limits_{{i = t - \tau_{2} + 2}}^{{t + 1 - \tau_{1} }} {\sum\limits_{i = j}^{t} {y^{T} (i)Qy(i)} } - \sum\limits_{{j = t - \tau_{2} + 1}}^{{t - \tau_{1} }} {\sum\limits_{i = j}^{t - 1} {y^{T} (i)Qy(i)} } \\ & = (\tau_{2} - \tau_{1} )y^{T} (t)Qy(t) - \sum\limits_{{i = t - \tau_{2} + 1}}^{{t - \tau_{1} }} {y^{T} (i)Qy(i)} , \\ \end{aligned} $$
(48)
$$ \Delta V_{4} (t) = y^{T} (t)Ry(t) - y^{T} (t - \tau_{2} )Ry(t - \tau_{2} ), $$
(49)
$$ \begin{aligned} \Delta V_{5} (t) & = \tau_{2} \sum\limits_{{j = - \tau_{2} }}^{ - 1} {[\eta^{T} (t)Z\mu (t) - } \eta^{T} (t + j)Z\eta (t + j)] \\ & = \tau_{2}^{2} \mu^{T} (t)Z\eta (t) - \tau_{2} \sum\limits_{{j = t - \tau_{2} }}^{t - 1} {\eta^{T} (j)Z\eta (j)} \\ & \le \tau_{2}^{2} \eta^{T} (t)Z\eta (t) - \sum\limits_{{j = t - \tau_{2} }}^{t - 1} {\eta^{T} (j)Z} \sum\limits_{{j = t - \tau_{2} }}^{t - 1} {\eta (j)} \\ & = \tau_{2}^{2} \eta^{T} (t)Z\eta (t) + \left[ {\begin{array}{*{20}c} {y(t)} \\ {y(t - \tau_{2} )} \\ \end{array} } \right]^{T} \left[ {\begin{array}{*{20}c} { - Z} & Z \\ * & { - Z} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {y(t)} \\ {y(t - \tau_{2} )} \\ \end{array} } \right]. \\ \end{aligned} $$
(50)

Substituting (46)–(50) into (45) leads to

$$ \Delta V(t) \le \zeta^{T} (t)\varXi_{1} \zeta (t), $$
(51)

where

$$ \zeta (t) = \left[ {\begin{array}{*{20}c} {y^{T} (t)} & {y^{T} (t - \tau (t))} & {y^{T} (t - \tau_{2} )} & {g^{T} (y(t))} & {g_{d}^{T} (y(t - \tau (t))} \\ \end{array} } \right], $$
$$ \varXi_{1} = \left[ {\begin{array}{*{20}c} { - P + (\tau_{2} - \tau_{1} + 1)Q + R - Z} & 0 & Z & 0 & 0 \\ * & { - Q} & 0 & 0 & 0 \\ * & * & { - R - Z} & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & * & 0 \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} A \\ 0 \\ 0 \\ {B^{T} } \\ {C^{T} } \\ \end{array} } \right]P\left[ {\begin{array}{*{20}c} A \\ 0 \\ 0 \\ {B^{T} } \\ {C^{T} } \\ \end{array} } \right]^{T} + \left[ {\begin{array}{*{20}c} {A - I} \\ 0 \\ 0 \\ {B^{T} } \\ {C^{T} } \\ \end{array} } \right](\tau_{2}^{2} Z)\left[ {\begin{array}{*{20}c} {A - I} \\ 0 \\ 0 \\ {B^{T} } \\ {C^{T} } \\ \end{array} } \right]^{T} . $$

From (23) and (24), it follows that

$$ [g_{i} (y_{i} (t)) - u_{i}^{ - } y_{i} (t)][g_{i} (y_{i} (t)) - u_{i}^{ + } y_{i} (t)] \le 0,\quad i = 1,2, \ldots ,n, $$
(52)
$$ [g_{{d_{i} }} (y_{i} (t)) - v_{i}^{ - } y_{i} (t)][g_{{d_{i} }} (y_{i} (t)) - v_{i}^{ + } y_{i} (t)] \le 0,\quad i = 1,2, \ldots ,n. $$
(53)

which are equivalent to

$$ \left[ {\begin{array}{*{20}c} {y(t)} \\ {g(y(t))} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {u_{i}^{ - } u_{i}^{ + } e_{i} e_{i}^{T} } & { - \frac{{u_{i}^{ - } + u_{i}^{ + } }}{2}e_{i} e_{i}^{T} } \\ { - \frac{{u_{i}^{ - } + u_{i}^{ + } }}{2}e_{i} e_{i}^{T} } & {e_{i} e_{i}^{T} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {y(t)} \\ {g(y(t))} \\ \end{array} } \right] \le 0,\quad i = 1,2, \ldots ,n, $$
(54)
$$ \left[ {\begin{array}{*{20}c} {y(t - \tau (t))} \\ {g_{d} (y(t - \tau (t)))} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {v_{i}^{ - } v_{i}^{ + } e_{i} e_{i}^{T} } & { - \frac{{v_{i}^{ - } + v_{i}^{ + } }}{2}e_{i} e_{i}^{T} } \\ { - \frac{{v_{i}^{ - } + v_{i}^{ + } }}{2}e_{i} e_{i}^{T} } & {e_{i} e_{i}^{T} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {y(t - \tau (t))} \\ {g(y(t - \tau (t)))} \\ \end{array} } \right] \le 0,\quad i = 1,2, \ldots ,n, $$
(55)

where e i is the unit column vector having one element on its ith row and zeros elsewhere.

Letting D = diag{d 1d 2, …, d n } ≻ 0 and H = diag{h 1h 2, …, h n } ≻ 0, it follows from (51), (54), and (55) that

$$ \begin{aligned} & \Delta V(t) \le \zeta^{T} (t)\varXi_{1} \zeta (t) \\ & \quad - \sum\limits_{i = 1}^{n} {d_{i} } \left[ {\begin{array}{*{20}c} {y(t)} \\ {g(y(t))} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {u_{i}^{ - } u_{i}^{ + } e_{i} e_{i}^{T} } & { - \frac{{u_{i}^{ - } + u_{i}^{ + } }}{2}e_{i} e_{i}^{T} } \\ { - \frac{{u_{i}^{ - } + u_{i}^{ + } }}{2}e_{i} e_{i}^{T} } & {e_{i} e_{i}^{T} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {y(t)} \\ {g(y(t))} \\ \end{array} } \right] \\ & \quad - \sum\limits_{i = 1}^{n} {h_{i} } \left[ {\begin{array}{*{20}c} {y(t - \tau (t))} \\ {g_{d} (y(t - \tau (t)))} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {v_{i}^{ - } v_{i}^{ + } e_{i} e_{i}^{T} } & { - \frac{{v_{i}^{ - } + v_{i}^{ + } }}{2}e_{i} e_{i}^{T} } \\ { - \frac{{v_{i}^{ - } + v_{i}^{ + } }}{2}e_{i} e_{i}^{T} } & {e_{i} e_{i}^{T} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {y(t - \tau (t))} \\ {g(y(t - \tau (t)))} \\ \end{array} } \right] \\ & \quad = \eta^{T} (t)\varXi_{1} \eta (t) \\ & \quad - \left[ {\begin{array}{*{20}c} {y(t)} \\ {g(y(t))} \\ \end{array} } \right]^{T} \left[ {\begin{array}{*{20}c} {U_{1} D} & { - U_{2} D} \\ * & D \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {y(t)} \\ {g(y(t))} \\ \end{array} } \right] \\ & \quad - \left[ {\begin{array}{*{20}c} {y(t - \tau (t))} \\ {g_{d} (y(t - \tau (t)))} \\ \end{array} } \right]^{T} \left[ {\begin{array}{*{20}c} {V_{1} H} & { - V_{2} H} \\ * & H \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {y(t - \tau (t))} \\ {g_{d} (y(t - \tau (t)))} \\ \end{array} } \right] \\ & \quad = \zeta^{T} (t)\varXi_{2} \zeta (t), \\ \end{aligned} $$
(56)

where

$$ \varXi_{2} = \left[ {\begin{array}{*{20}c} {\varPi_{1} } & 0 & Z & {U_{2} D} & 0 \\ * & {\varPi_{2} } & 0 & 0 & {V_{2} H} \\ * & * & {\varPi_{3} } & 0 & 0 \\ * & * & * & { - D} & 0 \\ * & * & * & * & { - H} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {A^{T} } \\ 0 \\ 0 \\ {B^{T} } \\ {C^{T} } \\ \end{array} } \right]P\left[ {\begin{array}{*{20}c} {A^{T} } \\ 0 \\ 0 \\ {B^{T} } \\ {C^{T} } \\ \end{array} } \right]^{T} + \left[ {\begin{array}{*{20}c} {A - I} \\ 0 \\ 0 \\ {B^{T} } \\ {C^{T} } \\ \end{array} } \right](\tau_{2}^{2} Z)\left[ {\begin{array}{*{20}c} {A - I} \\ 0 \\ 0 \\ {B^{T} } \\ {C^{T} } \\ \end{array} } \right]^{T} . $$

with Π 1, Π 2, and Π 3 defined in (33), (34), and (35). According to the research of Zhengguang et al (2009), Ξ is equivalent to Ξ 2, and we have

$$ \Delta V(t) \le \zeta^{T} (t)\varXi \zeta (t). $$
(57)

It is clear from Ξ ≺ 0 that there exists a small scalar ɛ 0 ≻ 0 such that

$$ \varXi + \varepsilon_{0} diag\{ I_{n \times n} ,0\} \prec 0. $$
(58)

From (57) and (58), it follows that

$$ \Delta V(t) \le - \varepsilon_{0} \left\| {y(t)} \right\|^{2} . $$
(59)

Therefore, the Lyapunov stability for the supply chain network (20) is achieved.

The exponential stability analysis of the network (20) is almost similar to the researches of Song and Wang (2007), Zhang et al (2008), Wang et al (2009) that is omitted to save pages. This completes the proof.

Appendix 2: Proof of Theorem 2

Construct the same Lyapunov–Krasovskii functional candidate V(t) as in Theorem 1. According to (36) and (37), a similar calculation as in Theorem 1 leads to

$$ \varXi (t) = \varXi + \Delta \varXi (t) \prec 0, $$
(60)

where

$$ \Delta \varXi (t) = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & {(MF(t)N_{a} )^{T} P} & {\tau_{2} (MF(t)N_{a} )^{T} Z} \\ * & 0 & 0 & 0 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & {(MF(t)N_{b} )^{T} P} & {\tau_{2} (MF(t)N_{b} )^{T} Z} \\ * & * & * & * & 0 & {(MF(t)N_{c} )^{T} P} & {\tau_{2} (MF(t)N_{c} )^{T} Z} \\ * & * & * & * & * & 0 & 0 \\ * & * & * & * & * & * & 0 \\ \end{array} } \right]. $$

It can be written as

$$ \varXi (t) = \varXi + \varGamma F(t)\varPsi^{T} + \varPsi F^{T} (t)\varGamma^{T} \prec 0. $$
(61)

By Lemma 1, (61) holds for any F(t) satisfying (37) if and only if there exists a scalar ɛ ≻ 0 such that

$$ \varXi + \varepsilon^{ - 1} \varGamma \varGamma^{T} + \varepsilon \varPsi \varPsi^{T} \prec 0. $$
(62)

By applying Schur complement (Zhengguang et al, 2009), (62) is equivalent to (38). Exponential stability analysis is exactly the same as Theorem 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzi Nav, H., Jahed Motlagh, M.R. & Makui, A. Robust controlling of chaotic behavior in supply chain networks. J Oper Res Soc 68, 711–724 (2017). https://doi.org/10.1057/s41274-016-0112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41274-016-0112-4

Keywords

Navigation