Skip to main content
Log in

Cell cycle modulation through subcellular spatially resolved production of singlet oxygen via direct 765 nm irradiation: manipulating the onset of mitosis

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Reactive oxygen species, ROS, are acknowledged signaling molecules in cellular processes. Singlet molecular oxygen, O2(a1Δg), is one ROS that can initiate cell responses that range from death to proliferation. To better understand the mechanisms involved, it is necessary to further investigate cell response to the “dose” of O2(a1Δg) that has been selectively produced at the expense of other ROS. In this context, dose refers not just to the amount of O2(a1Δg) produced, but also to the subcellular spatial domain in which it is produced. In this study, we selectively produced small and non-toxic amounts of O2(a1Δg) in sensitizer-free experiments by irradiating oxygen at 765 nm using a laser focused either into the nucleus or cytoplasm of HeLa cells. We find that O2(a1Δg)-mediated cell proliferation depends appreciably on the site of O2(a1Δg) production. At the same incident laser power, irradiation into the cytoplasm elicits moderate enhancement of proliferation, whereas irradiation into the nucleus leads to an appreciable delay in the onset and completion of mitosis. We discuss these results in light of what is known about the intracellular photophysics of O2(a1Δg) and the redox state of different cell domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Dröge, Free Radicals in the Physiological Control of Cell Function, Physiol. Rev., 2002, 82, 47–95.

    Article  PubMed  Google Scholar 

  2. J. Boonstra, J. A. Post, Molecular Events Associated with Reactive Oxygen Species and Cell Cycle Progression in Mammalian Cells, Gene, 2004, 337, 1–13.

    Article  CAS  PubMed  Google Scholar 

  3. W. A. Pryor, K. N. Houk, C. S. Foote, J. M. Fukuto, L. J. Ignarro, G. L. Squadrito, K. J. A. Davies, Free Radical Biology and Medicine: It's a Gas, Man!, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2006, 291, R491–R511.

    CAS  Google Scholar 

  4. M. L. Circu, T. Y. Aw, Reactive Oxygen Species, Cellular Redox Systems, and Apoptosis, Free Radicals Biol. Med., 2010, 48, 749–762.

    Article  CAS  Google Scholar 

  5. B. D'Autreaux, M. B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev., 2007, 8, 813–824.

    Article  CAS  Google Scholar 

  6. M. Schieber, N. S. Chandel, ROS Function in Redox Signaling and Oxidative Stress, Curr. Biol., 2014, 24, R453–R462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L.-O. Klotz, K.-D. Kröncke, H. Sies, Singlet Oxygen-Induced Signaling Effects in Mammalian Cells, Photochem. Photobiol. Sci., 2003, 2, 88–94.

    Article  CAS  PubMed  Google Scholar 

  8. S. W. Ryter, R. M. Tyrrell, Singlet Molecular Oxygen (1O2): A Possible Effector of Eukaryotic Gene Expression, Free Radicals Biol. Med., 1998, 24, 1520–1534.

    Article  CAS  Google Scholar 

  9. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, 2015.

    Book  Google Scholar 

  10. H. Sies, C. Berndt, D. P. Jones, Oxidative Stress, Annu. Rev. Biochem., 2017, 86, 715–748.

    Article  CAS  PubMed  Google Scholar 

  11. S. C. Gupta, D. Hevia, S. Patchva, B. Park, W. Koh, B. B. Aggarwal, Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy, Antioxid. Redox Signaling, 2012, 16, 1295–1322.

    Article  CAS  Google Scholar 

  12. P. R. Ogilby, Singlet Oxygen: There is Indeed Something New Under the Sun, Chem. Soc. Rev., 2010, 39, 3181–3209.

    Article  CAS  PubMed  Google Scholar 

  13. M. Westberg, M. Bregnhøj, C. Banerjee, A. Blázquez-Castro, T. Breitenbach, P. R. Ogilby, Exerting Better Control and Specificity with Singlet Oxygen Experiments in Live Mammalian Cells, Methods, 2016, 109, 81–91.

    Article  CAS  PubMed  Google Scholar 

  14. M. Westberg, M. Bregnhøj, A. Blázquez-Castro, T. Breitenbach, M. Etzerodt, P. R. Ogilby, Control of Singlet Oxygen Production in Experiments Performed on Single Mammalian Cells, J. Photochem. Photobiol., A, 2016, 321, 297–308.

    Article  CAS  Google Scholar 

  15. F. M. Pimenta, R. L. Jensen, T. Breitenbach, M. Etzerodt, P. R. Ogilby, Oxygen-Dependent Photochemistry and Photophysics of “miniSOG”, a Protein-Encased Flavin, Photochem. Photobiol., 2013, 89, 1116–1126.

    Article  CAS  PubMed  Google Scholar 

  16. R. D. Scurlock, B. Wang, P. R. Ogilby, Chemical Reactivity of Singlet Sigma Oxygen (b1Σg+) in Solution, J. Am. Chem. Soc., 1996, 118, 388–392.

    Article  CAS  Google Scholar 

  17. C. Schweitzer, R. Schmidt, Physical Mechanisms of Generation and Deactivation of Singlet Oxygen, Chem. Rev., 2003, 103, 1685–1757.

    Article  CAS  PubMed  Google Scholar 

  18. A. Blázquez-Castro, Direct 1O2 Optical Excitation: A Tool for Redox Biology, Redox Biol., 2017, 13, 39–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. M. Bregnhøj, A. Blázquez-Castro, M. Westberg, T. Breitenbach, P. R. Ogilby, Direct 765 nm Optical Excitation of Molecular Oxygen in Solution and in Single Mammalian Cells, J. Phys. Chem. B, 2015, 119, 5422–5429.

    Article  PubMed  CAS  Google Scholar 

  20. Y.-M. Go, D. P. Jones, Redox Compartmentalization in Eukaryotic Cells, Biochem. Biophys. Acta, 2008, 1780, 1273–1290.

    Article  CAS  PubMed  Google Scholar 

  21. R. W. Redmond, I. E. Kochevar, Spatially-Resolved Cellular Responses to Singlet Oxygen, Photochem. Photobiol., 2006, 82, 1178–1186.

    Article  CAS  PubMed  Google Scholar 

  22. N. Rubio, S. P. Fleury, R. W. Redmond, Spatial and Temporal Dynamics of in vitro Photodynamic Cell Killing: Extracellular Hydrogen Peroxide Mediates Neighboring Cell Death, Photochem. Photobiol. Sci., 2009, 8, 457–464.

    Article  CAS  PubMed  Google Scholar 

  23. A. Gollmer, F. Besostri, T. Breitenbach, P. R. Ogilby, Spatially resolved two-photon irradiation of an intracellular singlet oxygen photosensitizer: Correlating cell response to the site of localized irradiation, Free Radical Res., 2013, 47, 718–730.

    Article  CAS  Google Scholar 

  24. D. Kessel, Correlation between subcellular localization and photodynamic therapy, J. Porphyrins Phthalocyanines, 2004, 8, 1009–1014.

    Article  CAS  Google Scholar 

  25. A. Blázquez-Castro, T. Breitenbach, P. R. Ogilby, Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level, Photochem. Photobiol. Sci., 2014, 13, 1235–1240.

    Article  PubMed  CAS  Google Scholar 

  26. A. Kumar, L. A. Dailey, M. Swedrowska, R. Siow, G. E. Mann, G. Vizcay-Barrena, M. Arno, I. S. Mudway, B. Forbes, Quantifying the magnitude of the oxygen artefact inherent in culturing airway cells under atmospheric oxygen versus physiological levels, FEBS Lett., 2016, 590, 258–269.

    Article  CAS  PubMed  Google Scholar 

  27. C. E. Forristal, K. L. Wright, N. A. Hanley, R. O. C. Oreffo, F. D. Houghton, Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions, Reproduction, 2010, 139, 85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Bregnhøj, M. V. Krægpøth, R. J. Sørensen, M. Westberg, P. R. Ogilby, Solvent and Heavy-Atom Effects on the O2(X3Σg)–O2(b1Σg+) Absorption Transition, J. Phys. Chem. A, 2016, 120, 8285–8296.

    Article  PubMed  CAS  Google Scholar 

  29. A. Edelstein, N. Amodaj, K. Hoover, R. Vale, N. Stuurman, Computer control of microscopes using μmanager, Curr. Protoc. Mol. Biol., 2010, 92, 1–17.

    Article  Google Scholar 

  30. S. Hatz, J. D. C. Lambert, P. R. Ogilby, Measuring the Lifetime of Singlet Oxygen in a Single Cell: Addressing the Issue of Cell Viability, Photochem. Photobiol. Sci., 2007, 6, 1106–1116.

    Article  CAS  PubMed  Google Scholar 

  31. R. Williamson, S. Boardman, G. Eaton, T. Graham and K. Parramore, Advancing Maths for AQA: Statistics 2, Heinemann Educational Publishers, Oxford, 2005.

    Google Scholar 

  32. H. F. van Emden, Statistics for Terrified Biologists, Blackwell, Oxford, 2008.

    Google Scholar 

  33. M. Sinaasappel, C. Ince, Calibration of Pd-Porphyrin Phosphorescence for Oxygen Concentration Measurements in vivo, J. Appl. Physiol., 1996, 81, 2297–2303.

    Article  CAS  PubMed  Google Scholar 

  34. Y. L. Koo, Y. Cao, R. Kopelman, S. M. Koo, M. Brasuel, M. A. Philbert, Real-Time Measurements of Dissolved Oxygen Inside Live Cells by Organically Modified Silicate Fluorescent Nanosensors, Anal. Chem., 2004, 76, 2498–2505.

    Article  CAS  PubMed  Google Scholar 

  35. R. I. Dmitriev, D. B. Papkovsky, Intracellular Probes for Imaging Oxygen Concentration: How Good are They?, Methods Appl. Fluoresc., 2015, 3, 034001.

    Article  PubMed  CAS  Google Scholar 

  36. IUPAC Solubility Data Series. Volume 7: Oxygen and Ozone, ed. R. Battino, Pergamon Press, Oxford, 1981.

    Google Scholar 

  37. R. I. Dmitriev, A. V. Zhdanov, G. Jasionek, D. B. Papkovsky, Assessment of Cellular Oxygen Gradients with a Panel of Phosphorescent Oxygen-Sensitive Probes, Anal. Chem., 2012, 84, 2930–2938.

    Article  CAS  PubMed  Google Scholar 

  38. H. Kurokawa, H. Ito, M. Inoue, K. Tabata, Y. Sato, K. Yamagata, S. Kizaka-Kondoh, T. Kadonosono, S. Yano, M. Inoue, T. Kamachi, High Resolution Imaging of Intracellular Oxygen Concentration by Phosphorescence Lifetime, Sci. Rep., 2015, 5, 10657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. W. Snyder, E. Skovsen, J. D. C. Lambert, P. R. Ogilby, Subcellular, time-resolved studies of singlet oxygen in single cells, J. Am. Chem. Soc., 2005, 127, 14558–14559.

    Article  CAS  PubMed  Google Scholar 

  40. E. F. F. Silva, B. W. Pedersen, T. Breitenbach, R. Toftegaard, M. K. Kuimova, L. G. Arnaut, P. R. Ogilby, Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process, J. Phys. Chem. B., 2012, 116, 445–461 (see correction: J. Phys. Chem. B, 2012, 116, 14734).

    Article  PubMed  CAS  Google Scholar 

  41. M. K. Kuimova, G. Yahioglu, P. R. Ogilby, Singlet Oxygen in a Cell: Spatially Dependent Lifetimes and Quenching Rate Constants, J. Am. Chem. Soc., 2009, 131, 332–340.

    Article  CAS  PubMed  Google Scholar 

  42. P. R. Ogilby and M. K. Kuimova, Singlet Oxygen in Mammalian Cells, in Singlet Oxygen: Applications in Biosciences and Nanosciences, ed. S. Nonell and C. Flors, Royal Society of Chemistry, 2016, pp. 171–183.

    Google Scholar 

  43. D. P. Jones, Redox Sensing: Orthogonal Control in Cell Cycle and Apoptosis Signaling, J. Intern. Med., 2010, 268, 432–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Chiu, I. W. Dawes, Redox Control of Cell Proliferation, Trends Cell Biol., 2012, 22, 592–601.

    Article  CAS  PubMed  Google Scholar 

  45. Y.-M. Go, D. P. Jones, Redox Control Systems in the Nucleus: Mechanisms and Functions, Antioxid. Redox Signaling, 2010, 13, 489–509.

    Article  CAS  Google Scholar 

  46. P. Diaz Vivancos, T. Wolff, J. Markovic, F. V. Pallardo, C. H. Foyer, A Nuclear Glutathione Cycle within the Cell Cycle, Biochem. J., 2010, 431, 169–178.

    Article  CAS  PubMed  Google Scholar 

  47. R. E. Shackelford, W. K. Kaufmann, R. S. Paules, Oxidative Stress and Cell Cycle Checkpoint Function, Free Radicals Biol. Med., 2000, 28, 1387–1404.

    Article  CAS  Google Scholar 

  48. S. Kreuz, W. Fischle, Oxidative Stress Signaling to Chromatin in Health and Disease, Epigenomics, 2016, 8, 843–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. R. M. Green, M. Graham, M. R. O'Donovan, J. K. Chipman, N. J. Hodges, Subcellular Compartmentalization of Glutathione: Correlations with Parameters of Oxidative Stress Related to Genotoxicity, Mutagenesis, 2006, 21, 383–390.

    Article  CAS  PubMed  Google Scholar 

  50. O. Will, H.-C. Mahler, A.-P. Arrigo, B. Epe, Influence of Glutathione Levels and Heat-Shock on the Steady-State Levels of Oxidative DNA Base Modifications in Mammalian Cells, Carcinogenesis, 1999, 20, 333–337.

    Article  CAS  PubMed  Google Scholar 

  51. W. C. Burhans, N. H. Heintz, The Cell Cycle is a Redox Cycle: Linking Phase-Specific Targets to Cell Fate, Free Radicals Biol. Med., 2009, 47, 1282–1293.

    Article  CAS  Google Scholar 

  52. A. Barzilai, K.-I. Yamamoto, DNA Damage Responses to Oxidative Stress, DNA Repair, 2004, 3, 1109–1115.

    Article  CAS  PubMed  Google Scholar 

  53. F. Caputo, R. Vegliante, L. Ghibelli, Redox Modulation of the DNA Damage Response, Biochem. Pharmacol., 2012, 84, 1292–1306.

    Article  CAS  PubMed  Google Scholar 

  54. G. R. Buettner, B. A. Wagner, V. G. J. Rodgers, Quantitative Redox Biology: An Approach to Understand the Role of Reactive Species in Defining the Cellular Redox Environment, Cell Biochem. Biophys., 2013, 67, 477–483.

    Article  CAS  PubMed  Google Scholar 

  55. P. S. Peres, A. Valeriio, S. M. S. C. Cadena, S. M. B. Winnischofer, A. C. Scalfo, P. Di Mascio, G. R. Martinez, Glutathione Modifies the Oxidation Products of 2′-Deoxyguanosine by Singlet Molecular Oxygen, Arch. Biochem. Biophys., 2015, 586, 33–44.

    Article  CAS  PubMed  Google Scholar 

  56. T. P. A. Devasagayam, A. R. Sundquist, P. DiMascio, S. Kaiser, H. Sies, Activity of Thiols as Singlet Molecular Oxygen Quenchers, J. Photochem. Photobiol., B, 1991, 9, 105–116.

    Article  CAS  Google Scholar 

  57. S. Soboll, S. Gründel, J. Harris, V. Kolb-Bachofen, B. Ketterer, H. Sies, The content of glutathione and glutathione S-transferases and the glutathione peroxidase activity in rat liver nuclei determined by a non-aqueous technique of cell fractionation, Biochem. J., 1995, 311, 889–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O. Seksek, J. Bolard, Nuclear pH Gradient in Mammalian Cells Revealed by Laser Microspectrofluorimetry, J. Cell Sci., 1996, 109, 257–262.

    CAS  PubMed  Google Scholar 

  59. H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, M. R. Hamblin, The Nuts and Bolts of Low-Level Laser (Light) Therapy, Ann. Biomed. Eng., 2012, 40, 516–533.

    Article  PubMed  Google Scholar 

  60. M. Westberg, M. Bregnhøj, M. Etzerodt, P. R. Ogilby, No Photon Wasted: An Efficient and Selective Singlet Oxygen Photosensitizing Protein, J. Phys. Chem. B, 2017, 121, 9366–9371.

    Article  CAS  PubMed  Google Scholar 

  61. A. J. Meyer, T. P. Dick, Fluorescent Protein-Based Redox Probes, Antioxid. Redox Signaling, 2010, 13, 622–650.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Alfonso Blázquez-Castro acknowledges funding by the Aarhus Institute of Advanced Studies (AIAS) through the EU Marie Skłodowska-Curie AIAS-COFUND Program (Grant 609033). The authors thank Mikkel Bregnhøj and Michael Westberg, both of Aarhus University, for helpful conversations during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Ogilby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blázquez-Castro, A., Breitenbach, T. & Ogilby, P.R. Cell cycle modulation through subcellular spatially resolved production of singlet oxygen via direct 765 nm irradiation: manipulating the onset of mitosis. Photochem Photobiol Sci 17, 1310–1318 (2018). https://doi.org/10.1039/c8pp00338f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00338f

Navigation