Skip to main content
Log in

The singlet-oxygen-sensitized delayed fluorescence in mammalian cells: a time-resolved microscopy approach

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The present work provides a proof-of-concept that the singlet oxygen-sensitized delayed fluorescence (SOSDF) can be detected from individual living mammalian cells in a time-resolved microscopy experiment. To this end, 3T3 mouse fibroblasts incubated with 100 μM TPPS4 or TMPyP were used and the microsecond kinetics of the delayed fluorescence (DF) were recorded. The analysis revealed that SOSDF is the major component of the overall DF signal. The microscopy approach enables precise control of experimental conditions–the DF kinetics are clearly influenced by the presence of the 1O2 quencher (sodium azide), H2O/D2O exchange, and the oxygen concentration. Analysis of SOSDF kinetics, which was reconstructed as a difference DF kinetics between the unquenched and the NaN3-quenched samples, provides a cellular 1O2 lifetime of τΔ = 1–2 μs and a TPPS4 triplet lifetime of τT = 22 ± 5 μs in agreement with previously published values. The short SOSDF acquisition times, typically in the range of tens of seconds, enable us to study the dynamic cellular processes. It is shown that SOSDF lifetimes increase during PDT-like treatment, which may provide valuable information about changes of the intracellular microenvironment. SOSDF is proposed and evaluated as an alternative tool for 1O2 detection in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Gilbert and C. A. Colton, Reactive Oxygen Species in Biological Systems, Kluwer Academic/Plenum Publishers, New York, 1999.

    Google Scholar 

  2. B. B. Fischer, E. Hideg, A. Krieger-Liszkay, Production, detection, and signaling of singlet oxygen in photosynthetic organisms, Antioxid. Redox Signaling, 2013, 18, 2145–2162.

    Article  CAS  Google Scholar 

  3. A. Krieger-Liszkay, Singlet oxygen production in photosynthesis, J. Exp. Bot., 2005, 56, 337–346.

    Article  CAS  PubMed  Google Scholar 

  4. A. Juarranz, P. Jaén, F. Sanz-Rodríguez, J. Cuevas, S. González, Photodynamic therapy of cancer. Basic principles and applications, Clin. Transl. Oncol., 2008, 10, 148–154.

    Article  CAS  PubMed  Google Scholar 

  5. J. W. Snyder, J. D. C. Lambert and P. R. Ogilby, a Sensitizer for Singlet Oxygen Imaging in Cells: Characterizing the Irradiation-dependent Behavior of TMPyP in a Single Cell, Photochem. Photobiol., 2006, 82, 177–184.

    Article  CAS  PubMed  Google Scholar 

  6. C. Schweitzer and R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen, Chem. Rev., 2003, 103, 1685–1757.

    Article  CAS  PubMed  Google Scholar 

  7. M. Niedre, M. S. Patterson and B. C. Wilson, Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo, Photochem. Photobiol., 2002, 75, 382–391.

    Article  CAS  PubMed  Google Scholar 

  8. A. Jiménez-Banzo, M. L. Sagristà, M. Mora and S. Nonell, Kinetics of singlet oxygen photosensitization in human skin fibroblasts, Free Radicals Biol. Med., 2008, 44, 1926–1934.

    Article  CAS  Google Scholar 

  9. J. Schlothauer, S. Hackbarth, B. Röder, A new benchmark for time-resolved detection of singlet oxygen luminescence–revealing the evolution of lifetime in living cells with low dose illumination, Laser Phys. Lett., 2009, 6, 216–221.

    Article  CAS  Google Scholar 

  10. V. Vyklický, R. Dědic, N. Curkaniuk, J. Hála, Spectral- and time-resolved phosphorescence of photosensitizers and singlet oxygen: From in vitro towards in vivo, J. Lumin., 2013, 143, 729–733.

    Article  CAS  Google Scholar 

  11. E. F. F. da Silva, B. W. Pedersen, T. Breitenbach, R. Toftegaard, M. K. Kuimova, L. G. Arnaut and P. R. Ogilby, Irradiation- and sensitizer-dependent changes in the lifetime of intracellular singlet oxygen produced in a photosensitized process, J. Phys. Chem. B, 2012, 116, 445–461.

    Article  CAS  Google Scholar 

  12. E. Skovsen, J. W. Snyder, J. D. C. Lambert and P. R. Ogilby, Lifetime and diffusion of singlet oxygen in a cell, J. Phys. Chem. B, 2005, 109, 8570–8573.

    Article  CAS  PubMed  Google Scholar 

  13. S. Hatz, L. Poulsen and P. R. Ogilby, Time-resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: effects of oxygen diffusion and oxygen concentration, Photochem. Photobiol., 2008, 84, 1284–1290.

    Article  CAS  PubMed  Google Scholar 

  14. I. Zebger, J. W. Snyder, L. K. Andersen, L. Poulsen, Z. Gao, D. C. John, U. Kristiansen, P. R. Ogilby and J. D. C. Lambert, Direct Optical Detection of Singlet Oxygen from a Single Cell, Photochem. Photobiol., 2004, 79, 319–322.

    Article  CAS  PubMed  Google Scholar 

  15. J. W. Snyder, E. Skovsen, J. D. C. Lambert, L. Poulsen and P. R. Ogilby, Optical detection of singlet oxygen from single cells, Phys. Chem. Chem. Phys., 2006, 8, 4280–4293.

    Article  CAS  PubMed  Google Scholar 

  16. M. Scholz, R. Dědic, J. Valenta, T. Breitenbach, J. Hála, Real-time luminescence microspectroscopy monitoring of singlet oxygen in individual cells, Photochem. Photobiol. Sci., 2014, 13, 1203–1212.

    Article  CAS  PubMed  Google Scholar 

  17. M. J. Niedre, M. S. Patterson, A. Giles and B. C. Wilson, Imaging of Photodynamically Generated Singlet Oxygen, Photochem. Photobiol., 2005, 81, 941–943.

    Article  CAS  PubMed  Google Scholar 

  18. B. Li, H. Lin, D. Chen, B. C. Wilson and Y. Gu, Singlet Oxygen Detection During Photosensitization, J. Innov. Opt. Health Sci., 2013, 06, 1330002.

    Article  CAS  Google Scholar 

  19. M. T. Jarvi, M. J. Niedre, M. S. Patterson and B. C. Wilson, Singlet Oxygen Luminescence Dosimetry (SOLD) for Photodynamic Therapy: Current Status, Challenges and Future Prospects, Photochem. Photobiol., 2006, 82, 1198–1210.

    Article  CAS  PubMed  Google Scholar 

  20. X. Ragàs, A. Jiménez-Banzo, D. Sánchez-García, X. Batllori and S. Nonell, Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green, Chem. Commun., 2009, 2920–2922.

    Google Scholar 

  21. A. Gollmer, J. Arnbjerg, F. H. Blaikie, B. W. Pedersen, T. Breitenbach, K. Daasbjerg, M. Glasius and P. R. Ogilby, Singlet Oxygen Sensor Green: photochemical behavior in solution and in a mammalian cell, Photochem. Photobiol., 2011, 87, 671–679.

    Article  CAS  PubMed  Google Scholar 

  22. C. Flors, M. J. Fryer, J. Waring, B. Reeder, U. Bechtold, P. M. Mullineaux, S. Nonell, M. T. Wilson and N. R. Baker, Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green, J. Exp. Bot., 2006, 57, 1725–1734.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Shen, H. Lin, Z. Huang, D. Chen, B. Li and S. Xie, Indirect imaging of singlet oxygen generation from a single cell, Laser Phys. Lett., 2011, 8, 232–238.

    Article  CAS  Google Scholar 

  24. H. Kautsky and G. Muller, Luminescenzumwandlung durch Sauerstoff. Nachweis geringster Sauerstoffmengen, Z. Naturforsch., A: Phys. Sci., 1947, 2, 167–172.

    Article  Google Scholar 

  25. P. H. Bolton, R. D. Kenner and A. U. Khan, Molecular Oxygen Enhanced Fluorescence of Organic Molecules in Polymer Matrices. Energetic Correlation with Electronic Excited States of Molecular Oxygen and Fluorescing Molecules, J. Chem. Phys., 1972, 57, 5604.

    Article  CAS  Google Scholar 

  26. R. D. Kenner and A. U. Khan, Singlet oxygen-triplet organic molecule annihilation fluorescence in polymer matrices, Chem. Phys. Lett., 1975, 36, 643–646.

    Article  CAS  Google Scholar 

  27. B. Nickel and M. F. R. Prieto, Delayed fluorescence of the Kautsky-Muller Type from Liquid Solutions of Aromatic Compounds and Oxygen, Ber. Bunsen-Ges. Phys. Chem., 1988, 92, 1493–1503.

    Article  CAS  Google Scholar 

  28. P. P. Levin and S. M. B. Costa, Delayed Fluorescence Induced by Molecular Oxygen Quenching of Zinc Tetraphenylporphyrin Triplets at Gas/Solid Interfaces of Silica and Zeolite, J. Phys. Chem. B, 1997, 101, 1355–1363.

    Article  CAS  Google Scholar 

  29. J. Mosinger, K. Lang, J. Hostomský, J. Franc, J. Sýkora, M. Hof, P. Kubát, Singlet oxygen imaging in polymeric nanofibers by delayed fluorescence, J. Phys. Chem. B, 2010, 114, 15773–15779.

    Article  CAS  PubMed  Google Scholar 

  30. M. Scholz, R. Dědic, T. Breitenbach, J. Hála, Singlet oxygen-sensitized delayed fluorescence of common water-soluble photosensitizers, Photochem. Photobiol. Sci., 2013, 12, 1873–1884.

    Article  CAS  PubMed  Google Scholar 

  31. M. Scholz, R. Dědic, M. Miguel, R. Lavilla and S. Nonell, Thiazolyl-substituted porphyrins as standards for singlet molecular oxygen photosensitization, J. Porphyrins Phthalocyanines, 2011, 15, 1202–1208.

    Article  CAS  Google Scholar 

  32. M. Scholz, R. Dědic, J. Hála and S. Nonell, Oxygen effects on tetrapropylporphycene near-infrared luminescence kinetics, J. Mol. Struct., 2013, 1044, 303–307.

    Article  CAS  Google Scholar 

  33. J. Mosinger, K. Lang, L. Plíštil, S. Jesenská, J. Hostomský, Z. Zelinger, P. Kubát, Fluorescent polyurethane nanofabrics: a source of singlet oxygen and oxygen sensing, Langmuir, 2010, 26, 10050–10056.

    Article  CAS  Google Scholar 

  34. V. S. Maryakhina and S. N. Letuta, Pathology development stage and its influence on the delayed fluorescence kinetics of molecular probes, Laser Phys., 2013, 23, 025604.

    Article  CAS  Google Scholar 

  35. S. N. Letuta, A. F. Kuvandykova, S. N. Pashkevich and A. M. Saletskii, Features of the delayed fluorescence kinetics of exogenous fluorophores in biological tissues, Russ. J. Phys. Chem. A, 2013, 87, 1582–1587.

    Article  CAS  Google Scholar 

  36. S. N. Letuta, V. S. Maryakhina, S. N. Pashkevich and R. R. Rakhmatullin, Long-term luminescence of organic dyes in cells of biological tissues, Opt. Spectrosc., 2011, 110, 67–70.

    Article  CAS  Google Scholar 

  37. S. N. Letuta, V. S. Maryakhina and R. R. Rakhmatullin, Optical diagnostics of biological tissue cells during their cultivation in polymers, Quantum Electron., 2011, 41, 314–317.

    Article  CAS  Google Scholar 

  38. C. A. Parker, Photoluminescence of Solutions, Elsevier, 1968.

    Google Scholar 

  39. A. U. Khan and M. Kasha, Chemiluminescence Arising from Simultaneous Transitions in Pairs of Singlet Oxygen Molecules, J. Am. Chem. Soc., 1970, 92, 3293–3300.

    Article  CAS  Google Scholar 

  40. E. Lengfelder, E. Cadenas and H. Sies, Effect of DABCO (1,4-diazabicyclo[2,2,2]-octane) on singlet oxygen monomol (1270 nm) and dimol (634 and 703 nm) emission, FEBS Lett., 1983, 164, 366–370.

    Article  CAS  Google Scholar 

  41. A. A. Krasnovsky and K. V. Neverov, Photoinduced Dimol Luminescence of Singlet Molecular Oxygen in Solutions of Photosensitizers, Chem. Phys. Lett., 1990, 167, 591–596.

    Article  Google Scholar 

  42. R. Dědic, A. Molnár, M. Kořínek, A. Svoboda, J. Pšenčík, J. Hála, Spectroscopic study of singlet oxygen photogeneration in meso-tetra-sulphonatophenyl-porphin, J. Lumin., 2004, 108, 117–119.

    Article  CAS  Google Scholar 

  43. R. Dědic, V. Vyklický, A. Svoboda, J. Hála, Phosphorescence of singlet oxygen and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphine: Time and spectral-resolved study, J. Mol. Struct., 2009, 924–926, 153–156.

    Article  CAS  Google Scholar 

  44. R. I. Freshney, in Culture of Animal Cells, John Wiley, 2010.

    Book  Google Scholar 

  45. S. Hackbarth, J. Schlothauer, A. Preuss, B. Röder, New insights to primary photodynamic effects–Singlet oxygen kinetics in living cells, J. Photochem. Photobiol., B, 2010, 98, 173–179.

    Article  CAS  Google Scholar 

  46. F. Wilkinson, W. P. Helman and A. B. Ross, Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation, J. Phys. Chem. Ref. Data, 1995, 24, 663–1021.

    Article  CAS  Google Scholar 

  47. R. Dědic, J. Pšenčík, A. Svoboda, J. Hála, Phosphorescence of singlet oxygen and meso-tetra (4-sulfonatophenyl) porphin: time and spectral resolved study, J. Mol. Struct., 2003, 651, 301–304.

    Article  CAS  Google Scholar 

  48. H. Schneckenburger, M. H. Gschwend, R. Sailer, A. Rück and W. S. L. Straug, Time-resolved pH-dependent fluorescence of hydrophilic porphyrins in solution and in cultivated cells, J. Photochem. Photobiol., B, 1995, 27, 251–255.

    Article  CAS  Google Scholar 

  49. K. Berg, K. Madslien, J. C. Bommer, R. Oftebro, J. W. Winkelman and J. Moan, Light induced relocalization of sulfonated meso-tetraphenylporphines in NHIK 3025 cells and effects of dose fractionation, Photochem. Photobiol., 1991, 53, 203–210.

    Article  CAS  PubMed  Google Scholar 

  50. W. S. L. Strauss, M. H. Gschwend, H. Schneckenburger, R. Steiner, A. Rück, Intracellular fluorescence behaviour of meso-tetra (4- sulphonatophenyl) porphyrin during photodynamic treatment at various growth phases of cultured cells, J. Photochem. Photobiol., B, 1995, 28, 155–161.

    Article  CAS  Google Scholar 

  51. K. Berg and J. Moan, Lysosomes and Microtubules as Targets for Photochemotherapy of Cancer, Photochem. Photobiol., 1997, 65, 403–409.

    Article  CAS  PubMed  Google Scholar 

  52. P. E. Stromhaug, T. O. Berg, K. Berg and P. O. Seglen, A novel method for the study of autophagy: destruction of hepatocytic lysosomes, but not autophagosomes, by the photosensitizing porphyrin tetra(4-sulphonatophenyl)porphine, Biochem. J., 1997, 321 Pt 1, 217–225.

    Article  PubMed  PubMed Central  Google Scholar 

  53. T. Gensch and S. E. Braslavsky, Volume Changes Related to Triplet Formation of Water-Soluble Porphyrins. A Laser-Induced Optoacoustic Spectroscopy (LIOAS) Study, J. Phys. Chem. B, 1997, 101, 101–108.

    Article  CAS  Google Scholar 

  54. T. Gensch, C. Viappiani, S. E. Braslavsky, R. V. April, V. Re, M. Recei and V. August, Structural Volume Changes upon Photoexcitation of Porphyrins: Role of the Nitrogen - Water Interactions, J. Am. Chem. Soc., 121 45, 1999, 10573–10582.

    Article  CAS  Google Scholar 

  55. I. Hanyż, D. Wróbel, The influence of pH on charged porphyrins studied by fluorescence and photoacoustic spectroscopy, Photochem. Photobiol. Sci., 2002, 1, 126–132.

    Article  PubMed  CAS  Google Scholar 

  56. M. K. Kuimova, S. W. Botchway, A. W. Parker, M. Balaz, H. A. Collins, H. L. Anderson, K. Suhling and P. R. Ogilby, Imaging intracellular viscosity of a single cell during photoinduced cell death, Nat. Chem., 2009, 1, 69–73.

    Article  CAS  PubMed  Google Scholar 

  57. J. W. Snyder, E. Skovsen, J. D. C. Lambert and P. R. Ogilby, Subcellular, time-resolved studies of singlet oxygen in single cells, J. Am. Chem. Soc., 2005, 127, 14558–14559.

    Article  CAS  PubMed  Google Scholar 

  58. A. A. Krasnovsky and K. V. Neverov, On the mechanism of photosensitized luminescence of singlet oxygen dimols in air-saturated pigment solutions, Biophysics, 2010, 55, 349–352.

    Article  Google Scholar 

  59. M. K. Kuimova, G. Yahioglu and P. R. Ogilby, Singlet Oxygen in a Cell: Spatially Dependent Lifetimes and Quenching Rate Constants, J. Am. Chem. Soc., 2009, 131, 332–340.

    Article  CAS  PubMed  Google Scholar 

  60. P. P. Levin and S. M. B. Costa, Kinetics of oxygen induced delayed fluorescence of eosin adsorbed on alumina. The dependence on dye and oxygen concentrations, Chem. Phys. Lett., 2000, 320, 194–201.

    Article  CAS  Google Scholar 

  61. T. Breitenbach, M. K. Kuimova, P. Gbur, S. Hatz, N. B. Schack, B. W. Pedersen, J. D. C. Lambert, L. Poulsen and P. R. Ogilby, Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells, Photochem. Photobiol. Sci., 2009, 8, 442–452.

    Article  CAS  PubMed  Google Scholar 

  62. A. C. Rück, H. Schneckenburger, W. S. L. Strauss, M. H. Gschwend and R. W. Steiner, Intracellular relocalization of anionic photosensitizers measured by cw and time-gated microscopy and spectroscopy, Proc. SPIE, 1995, 2329, 244–251.

    Article  Google Scholar 

  63. H. Kolarova, R. Bajgar, K. Tomankova, P. Nevrelova and J. Mosinger, Comparison of sensitizers by detecting reactive oxygen species after photodynamic reaction in vitro, Toxicol. In Vitro, 2007, 21, 1287–1291.

    Article  CAS  PubMed  Google Scholar 

  64. H. Kolarova, P. Nevrelova, K. Tomankova, P. Kolar, R. Bajgar and J. Mosinger, Production of reactive oxygen species after photodynamic therapy by porphyrin sensitizers, Gen. Physiol. Biophys., 2008, 27, 101–105.

    CAS  PubMed  Google Scholar 

  65. R. R. Allison and C. H. Sibata, Oncologic photodynamic therapy photosensitizers: a clinical review, Photodiagn. Photodyn. Ther., 2010, 7, 61–75.

    Article  CAS  Google Scholar 

  66. M. Lapeš, J. Petera and M. Jirsa, Photodynamic therapy of cutaneous metastases of breast cancer after local application of meso-tetra-(para-sulphophenyl)-porphin (TPPS4), J. Photochem. Photobiol., B, 1996, 36, 205–207.

    Article  Google Scholar 

  67. E. G. Mik, T. Johannes, C. J. Zuurbier, A. Heinen, J. H. P. M. Houben-Weerts, G. M. Balestra, J. Stap, J. F. Beek and C. Ince, In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique., Biophys. J., 2008, 95, 3977–3990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. F. A. Harms, W. M. I. de Boon, G. M. Balestra, S. I. A. Bodmer, T. Johannes, R. J. Stolker and E. G. Mik, Oxygen-dependent delayed fluorescence measured in skin after topical application of 5-aminolevulinic acid, J. Biophotonics, 2011, 4, 731–739.

    Article  CAS  PubMed  Google Scholar 

  69. F. A. Harms, W. J. Voorbeijtel, S. I. A. Bodmer, N. J. H. Raat and E. G. Mik, Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo, Mitochondrion, 2013, 13, 507–514.

    Article  CAS  PubMed  Google Scholar 

  70. E. G. Mik, Special article: measuring mitochondrial oxygen tension: from basic principles to application in humans, Anesth. Analg., 2013, 117, 834–846.

    Article  CAS  PubMed  Google Scholar 

  71. F. Piffaretti, H. E. van den Bergh and G. Wagnieres, Optical fiber-based setup for in vivo measurement of the delayed fluorescence lifetime of oxygen sensors delayed fluorescence lifetime of oxygen sensors, J. Biomed. Opt., 2011, 16, 037005.

    Article  PubMed  CAS  Google Scholar 

  72. F. Piffaretti, A. Novello, R. Kumar, E. Forte, C. Paulou, P. Nowak-Sliwinska, H. van der Bergh and G. Wagnieres, Real-time, in vivo measurement of tissular pO2 through the delayed fluorescence of endogenous protoporphyrin IX during photodynamic therapy, J. Biomed. Opt., 2012, 17, 115007.

    Article  PubMed  CAS  Google Scholar 

  73. P. P. Levin and S. M. Costa, Photokinetics in tetraphenylporphyrin — molecular oxygen system at gas/solid interfaces: effect of singlet oxygen quenchers on oxygen-induced delayed fluorescence, Chem. Phys., 2001, 263, 423–436.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Scholz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholz, M., Biehl, AL., Dědic, R. et al. The singlet-oxygen-sensitized delayed fluorescence in mammalian cells: a time-resolved microscopy approach. Photochem Photobiol Sci 14, 700–713 (2015). https://doi.org/10.1039/c4pp00339j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00339j

Navigation