Skip to main content

Advertisement

Log in

Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Singlet oxygen is a highly reactive species which is involved in a number of processes, including photodynamic therapy of cancer. Its very weak near-infrared emission makes imaging of singlet oxygen in biological systems a long-term challenge. We address this challenge by introducing Singlet Oxygen Feedback Delayed Fluorescence (SOFDF) as a novel modality for semi-direct microscopic time-resolved wide-field imaging of singlet oxygen in biological systems. SOFDF has been investigated in individual fibroblast cells incubated with a well-known photosensitizer aluminium phthalocyanine tetrasulfonate. The SOFDF emission from the cells is several orders of magnitude stronger and much more readily detectable than the very weak near-infrared phosphorescence of singlet oxygen. Moreover, the analysis of SOFDF kinetics enables us to estimate the lifetimes of the involved excited states. Real-time SOFDF images with micrometer spatial resolution and submicrosecond temporal-resolution have been recorded. Interestingly, a steep decrease in the SOFDF intensity after the photodynamically induced release of a photosensitizer from lysosomes has been demonstrated. This effect could be potentially employed as a valuable diagnostic tool for monitoring and dosimetry in photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Derosa, and R. J. Crutchley, Coord. Chem. Rev., 2002, 233–234, 351–357.

    Article  Google Scholar 

  2. S. Nonell, and C. Flors, Singlet Oxygen: Applications in Biosciences and Nanosciences, The Royal Society of Chemistry, 2016, vol. 1, pp. P001–P472.

    Article  Google Scholar 

  3. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, CA-Cancer J. Clin., 2011, 61, 250–281.

    Article  PubMed  PubMed Central  Google Scholar 

  4. M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, Photochem. Photobiol., 2006, 82, 1198–1210.

    Article  CAS  PubMed  Google Scholar 

  5. J. Baier, T. Fuß, C. Pöllmann, C. Wiesmann, K. Pindl, R. Engl, D. Baumer, M. Maier, M. Landthaler, and W. Bäumler, J. Photochem. Photobiol., B, 2007, 87, 163–173.

    Article  CAS  Google Scholar 

  6. J. C. Schlothauer, J. Falckenhayn, T. Perna, S. Hackbarth, and B. Röder, J. Biomed. Opt., 2013, 18, 115001.

    Article  PubMed  CAS  Google Scholar 

  7. R. Dědic, A. Stíbal, V. Vyklický, M. Franěk, A. Svoboda, and J. Hála, J. Innovative Opt. Health Sci., 2015, 8, 1550037.

    Article  CAS  Google Scholar 

  8. T. Bornhütter, J. Pohl, C. Fischer, I. Saltsman, A. Mahammed, Z. Gross, and B. Rder, Molecules, 2016, 21, 485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. S. Hatz, L. Poulsen, and P. R. Ogilby, Photochem. Photobiol., 2008, 84, 1284–1290.

    Article  CAS  PubMed  Google Scholar 

  10. P. R. Ogilby, Chem. Soc. Rev., 2010, 39, 3181–3209.

    Article  CAS  PubMed  Google Scholar 

  11. M. Scholz, R. Dědic, J. Valenta, T. Breitenbach, and J. Hála, Photochem. Photobiol. Sci., 2014, 13, 1203–1212.

    Article  CAS  PubMed  Google Scholar 

  12. B. Li, L. Lin, H. Lin, and B. C. Wilson, J. Biophotonics, 2016, 9, 1314–1325.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Shen, H. Lin, Z. Huang, D. Chen, B. Li, and S. Xie, Laser Phys. Lett., 2011, 8, 232–238.

    Article  CAS  Google Scholar 

  14. X. Ragàs, A. Jiménez-Banzo, D. Sánchez-García, X. Batllori, and S. Nonell, Chem. Commun., 2009, 2920–2922.

    Google Scholar 

  15. A. Gollmer, J. Arnbjerg, F. H. Blaikie, B. W. Pedersen, T. Breitenbach, K. Daasbjerg, M. Glasius, and P. R. Ogilby, Photochem. Photobiol., 2011, 87, 671–679.

    Article  CAS  PubMed  Google Scholar 

  16. C. A. Parker, Photoluminescence of Solutions, Elsevier, 1968.

    Google Scholar 

  17. R. D. Kenner, and A. U. Khan, J. Chem. Phys., 1976, 64, 1877–1882.

    Article  CAS  Google Scholar 

  18. M. Scholz, R. Dědic, J. Hála, and S. Nonell, J. Mol. Struct., 2013, 1044, 303–307.

    Article  CAS  Google Scholar 

  19. M. Scholz, R. Dědic, T. Breitenbach, and J. Hála, Photochem. Photobiol. Sci., 2013, 12, 1873–1884.

    Article  CAS  PubMed  Google Scholar 

  20. M. Scholz, A.-L. Biehl, R. Dědic, and J. Hála, Photochem. Photobiol. Sci., 2015, 14, 700–713.

    Article  CAS  PubMed  Google Scholar 

  21. M. Scholz, and R. Dědic, Singlet Oxygen: Applications in Biosciences and Nanosciences, Royal Society of Chemistry, London, 2016, ch. 28, vol. 14, pp. 63–81.

    Article  CAS  Google Scholar 

  22. I. Vinklárek, M. Scholz, R. Dědic, and J. Hála, Photochem. Photobiol. Sci., 2017, 16, 507–518.

    Article  PubMed  CAS  Google Scholar 

  23. P. H. Bolton, R. D. Kenner, and A. U. Khan, J. Chem. Phys., 1972, 57, 5604–5605.

    Article  CAS  Google Scholar 

  24. R. D. Kenner, and A. U. Khan, Chem. Phys. Lett., 1975, 36, 643–646.

    Article  CAS  Google Scholar 

  25. P. P. Levin, and S. M. B. Costa, J. Phys. Chem. B, 1997, 101, 1355–1363.

    Article  CAS  Google Scholar 

  26. P. P. Levin, and S. M. Costa, Chem. Phys., 2001, 263, 423–436.

    Article  CAS  Google Scholar 

  27. V. V. Bryukhanov, G. A. Ketsle, V. C. Laurinas, and L. V. Levshin, Opt. Spektrosk., 1986, 60, 205–207.

    CAS  Google Scholar 

  28. S. N. Letuta, V. S. Maryakhina, S. N. Pashkevich, and R. R. Rakhmatullin, Opt. Spectrosc., 2011, 110, 67–70.

    Article  CAS  Google Scholar 

  29. V. S. Maryakhina, and S. N. Letuta, Laser Phys., 2013, 23, 025604.

    Article  CAS  Google Scholar 

  30. S. Letuta, S. Pashkevich, A. Ishemgulov, Y. Lantukh, E. Alidzhanov, S. Sokabaeva, and V. Bryukhanov, J. Photochem. Photobiol., B, 2016, 163, 232–236.

    Article  CAS  Google Scholar 

  31. J. Mosinger, K. Lang, J. Hostomský, J. Franc, J. Sýkora, M. Hof, and P. Kubát, J. Photochem. Photobiol., B, 2010, 114, 15773–15779.

    CAS  Google Scholar 

  32. J. Mosinger, K. Lang, L. Píštil, S. Jesenska, J. Hostomský, Z. Zelinger, and P. Kubát, Langmuir, 2010, 26, 10050–10056.

    Article  CAS  PubMed  Google Scholar 

  33. R. Bonnett, and G. Martiínez, Tetrahedron, 2001, 57, 9513–9547.

    Article  CAS  Google Scholar 

  34. A. Ogunsipe, and T. Nyokong, J. Photochem. Photobiol., A, 2005, 173, 211–220.

    Article  CAS  Google Scholar 

  35. J. P. F. Longo, S. P. Lozzi, A. R. Simioni, P. C. Morais, A. C. Tedesco, and R. B. Azevedo, J. Photochem. Photobiol., B, 2009, 94, 143–146.

    Article  CAS  Google Scholar 

  36. M. Gmurek, P. Kubát, J. Mosinger, and J. S. Miller, J. Photochem. Photobiol., A, 2011, 223, 50–56.

    Article  CAS  Google Scholar 

  37. A. Jiménez-Banzo, M. L. Sagristà, M. Mora, and S. Nonell, Free Radical Biol. Med., 2008, 44, 1926–1934.

    Article  CAS  Google Scholar 

  38. S. Hackbarth, J. Schlothauer, A. Preuss, and B. Röder, J. Photochem. Photobiol., B, 2010, 98, 173–179.

    Article  CAS  Google Scholar 

  39. M. Niedre, M. S. Patterson, and B. C. Wilson, Photochem. Photobiol., 2002, 75, 382–391.

    Article  CAS  PubMed  Google Scholar 

  40. P. R. Ogilby, Photochem. Photobiol. Sci., 2010, 9, 1543–1560.

    Article  CAS  PubMed  Google Scholar 

  41. V. Vyklický, R. Dědic, N. Curkaniuk, and J. Hála, J. Lumin., 2013, 143, 729–733.

    Article  CAS  Google Scholar 

  42. Z. Kvíčalová, J. Alster, E. Hofmann, P. Khoroshyy, R. Litvín, D. Bína, T. Polívka, and J. Pšenčík, Biochim. Biophys. Acta, Bioenerg., 2016, 1857, 341–349.

    Article  CAS  Google Scholar 

  43. C. E. Aitken, R. A. Marshall, and J. D. Puglisi, Biophys. J., 2008, 94, 1826–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. P. Juzenas, A. Juzeniene, R. Rotomskis, and J. Moan, J. Photochem. Photobiol., B, 2004, 75, 107–110.

    Article  CAS  Google Scholar 

  45. Q. Peng, G. W. Farrants, K. Madslien, J. C. Bommer, J. Moan, H. E. Danielsen, and J. M. Nesland, Int. J. Cancer, 1991, 49, 290–295.

    Article  CAS  PubMed  Google Scholar 

  46. Q. Peng, J. Moan, G. W. Farrants, H. E. Danieisen, and C. Rimington, Cancer Lett., 1991, 58, 37–47.

    Article  CAS  PubMed  Google Scholar 

  47. J. Moan, K. Berg, H. Anholt, and K. Madslien, Int. J. Cancer, 1994, 58, 865–870.

    Article  CAS  PubMed  Google Scholar 

  48. M. Ambroz, A. Beeby, A. Macrobert, M. Simpson, R. Svensen, and D. Phillips, J. Photochem. Photobiol., B, 1991, 9, 87–95.

    Article  CAS  Google Scholar 

  49. J. W. Snyder, E. Skovsen, J. D. C. Lambert, and P. R. Ogilby, J. Am. Chem. Soc., 2005, 127, 14558–14559.

    Article  CAS  PubMed  Google Scholar 

  50. E. F. F. da Silva, B. W. Pedersen, T. Breitenbach, R. Toftegaard, M. K. Kuimova, L. G. Arnaut, and P. R. Ogilby, J. Phys. Chem. B, 2012, 116, 445–461.

    Article  PubMed  CAS  Google Scholar 

  51. J. Schlothauer, S. Hackbarth, and B. Röder, Laser Phys. Lett., 2009, 6, 216–221.

    Article  CAS  Google Scholar 

  52. S. Hackbarth, J. Schlothauer, A. Preuß, C. Ludwig, and B. Röder, Laser Phys. Lett., 2012, 9, 474–480.

    Article  CAS  Google Scholar 

  53. F. Wilkinson, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data, 1995, 24, 663–1021.

    Article  CAS  Google Scholar 

  54. E. Skovsen, J. W. Snyder, J. D. C. Lambert, and P. R. Ogilby, J. Phys. Chem. B, 2005, 109, 8570–8573.

    Article  CAS  PubMed  Google Scholar 

  55. J. W. Snyder, E. Skovsen, J. D. C. Lambert, L. Poulsen, and P. R. Ogilby, Phys. Chem. Chem. Phys., 2006, 8, 4280–4293.

    Article  CAS  PubMed  Google Scholar 

  56. M. K. Kuimova, G. Yahioglu, and P. R. Ogilby, J. Am. Chem. Soc., 2009, 131, 332–340.

    Article  CAS  PubMed  Google Scholar 

  57. R. R. Allison, and C. H. Sibata, Photodiagn. Photodyn. Ther., 2010, 7, 61–75.

    Article  CAS  Google Scholar 

  58. R. M. Amin, C. Hauser, I. Kinzler, A. Rueck, and C. Scalfi-Happ, Photochem. Photobiol. Sci., 2012, 11, 1156–1163.

    Article  CAS  PubMed  Google Scholar 

  59. J. W. Snyder, J. D. C. Lambert, and P. R. Ogilby, Photochem. Photobiol., 2006, 82, 177–184.

    Article  CAS  PubMed  Google Scholar 

  60. Y. Shen, H. Y. Lin, Z. F. Huang, D. F. Chen, B. H. Li, and S. S. Xie, Laser Phys. Lett., 2011, 8, 232–238.

    Article  CAS  Google Scholar 

  61. N. Sekkat, H. v. d. Bergh, T. Nyokong, and N. Lange, Molecules, 2012, 17, 98–144.

    Article  CAS  Google Scholar 

  62. E. G. Mik, Anesth. Analg., 2013, 117, 834–846.

    Article  CAS  PubMed  Google Scholar 

  63. R. Ubbink, M. A. W. Bettink, R. Janse, F. A. Harms, T. Johannes, F. M. Münker and E. G. Mik, J. Clin. Monit. Comput., 2016, 10.1007/s10877-016-9966-x.

    Google Scholar 

  64. F. Piffaretti, A. Novello, R. Kumar, E. Forte, C. Paulou, P. Nowak-Sliwinska, H. van der Bergh, and G. Wagnieres, J. Biomed. Opt., 2012, 17, 115007.

    Article  PubMed  CAS  Google Scholar 

  65. V. Huntosova, E. Gerelli, M. Zellweger, and G. Wagnières, J. Photochem. Photobiol., B, 2016, 164, 49–56.

    Article  CAS  Google Scholar 

  66. V. Huntosova, E. Gerelli, M. Zellweger, and G. Wagnières, Photodiagn. Photodyn. Ther., 2017, 17, A36.

    Article  Google Scholar 

  67. M. K. Kuimova, S. W. Botchway, A. W. Parker, M. Balaz, H. A. Collins, H. L. Anderson, K. Suhling, and P. R. Ogilby, Nat. Chem., 2009, 1, 69–73.

    Article  CAS  PubMed  Google Scholar 

  68. M. Patterson, and B. Pogue, Appl. Opt., 1994, 33, 1963–1974.

    Article  CAS  PubMed  Google Scholar 

  69. T. D. Poulsen, P. R. Ogilby, and K. V. Mikkelsen, J. Phys. Chem. A, 1998, 102, 9829–9832.

    Article  CAS  Google Scholar 

  70. C. Schweitzer, and R. Schmidt, Chem. Rev., 2003, 103, 1685–1757.

    Article  CAS  PubMed  Google Scholar 

  71. M. Scholz, PhD Thesis, Spectroscopic Study of Singlet Oxygen in Cells and Model Systems, Charles University, Prague, 2016.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the project P501/12/G055 from the Czech Science Foundation and EC Operational Programme VaVpI CZ.1.05/4.1.00/16.0340.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Scholz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholz, M., Dědic, R. & Hála, J. Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells. Photochem Photobiol Sci 16, 1643–1653 (2017). https://doi.org/10.1039/c7pp00132k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00132k

Navigation