Skip to main content
Log in

Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We prepared water soluble, biocompatible fluorescent turn-on pH nanosensors and characterized their behavior as a function of changes in pH. The response relies on a halochromic reaction of a spirorhodamineamide derived from the bright and highly chemically and photo-stable rhodamine 6G, encapsulated in core/nanoporous shell silica nanoparticles. The fluorescent sensors displayed a fast response in the pH range of intracellular compartments. The encapsulation conferred solubility in aqueous environments and biocompatibility. We assessed the two main properties of the sensor, namely the useful pH range and the kinetics of the response, and compared them to those of the free probe. We found that such properties are strongly dependent on the functionalization and position in the silica matrix relative to the core/shell structure. Finally, we demonstrated the cellular uptake of the nanosensors, and their localization in lyso-somes of living cells, by fluorescence confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. T. Gonçalves, Fluorescent Labeling of Biomolecules with Organic Probes, Chem. Rev., 2009, 109, 190–212.

    Article  CAS  PubMed  Google Scholar 

  2. M. Lee, J. Han, J. Lee, N. Park, R. Kumar, C. Kang and J. Kim, Two-Color Probe to Monitor a Wide Range of pH Values in Cells, Angew. Chem., Int. Ed., 2013, 52, 6206–6209.

    Article  CAS  Google Scholar 

  3. L. Li, C. Wang, J. Wu, Y. C. Tse, Y. Cai and K. M. Wong, A Molecular Chameleon with Fluorescein and Rhodamine Spectroscopic Behaviors, Inorg. Chem., 2016, 55, 205–213.

    Article  PubMed  CAS  Google Scholar 

  4. R. P. Haugland, Handbook of fluorescent probes and research chemicals, Molecular Probes Inc Eugene, OR. USA, 9th edn, 2002.

    Google Scholar 

  5. M. Beija, C. A. M. Afonso and J. M. G. Martinho, Synthesis and applications of Rhodamine derivatives as fluorescent probes, Chem. Soc. Rev., 2009, 38, 2410–2433.

    Article  CAS  PubMed  Google Scholar 

  6. H. Giloh and J. W. Sedat, Fluorescence Microscopy: Reduced Photobleaching of Rhodamine and Fluorescein Protein Conjugates by n-Propyl Gallate, Science, 1982, 217, 1252–1255.

    Article  CAS  PubMed  Google Scholar 

  7. C. Eggeling, J. Widengren, R. Rigler and C. A. M. Seidel, Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis, Anal. Chem., 1998, 70, 2651–2659.

    Article  CAS  PubMed  Google Scholar 

  8. J. Widengren and R. Rigler, Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy, Bioimaging, 1996, 4, 149–157.

    Article  CAS  Google Scholar 

  9. K.-H. Knauer and R. Gleiter, Photochromism of Rhodarnine Derivatives, Angew. Chem., Int. Ed. Engl., 1977, 16, 113.

    Article  Google Scholar 

  10. J. Fölling, V. N. Belov, R. Kunetsky, R. Medda, A. Schönle, A. Egner, C. Eggeling, M. L. Bossi and S. W. Hell, Photochromic Rhodamines provide Nanoscopy with Optical Sectioning, Angew. Chem., Int. Ed., 2007, 46, 6266–6270.

    Article  CAS  Google Scholar 

  11. M. L. Bossi, J. Fölling, V. N. Belov, V. P. Boyarskiy, R. Medda, A. Egner, C. Eggeling, A. Schönle and S. W. Hell, Multicolor Far-Field Fluorescence Nanoscopy through Isolated Detection of Distinct Molecular Species, Nano Lett., 2008, 8, 2463–2468.

    Article  CAS  PubMed  Google Scholar 

  12. V. N. Belov, M. L. Bossi, J. Foelling, V. P. Boyarskiy and S. W. Hell, Rhodamine Spiroamides for Multicolor SingleMolecule Switching Fluorescent Nanoscopy, Chem. - Eur. J., 2009, 15, 10762–10776.

    Article  CAS  PubMed  Google Scholar 

  13. H. Aoki, K. Mori and S. Ito, Conformational analysis of single polymer chains in three dimensions by super-resolution fluorescence microscopy, Soft Matter, 2012, 8, 4390–4395.

    Article  CAS  Google Scholar 

  14. D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell and A. Egner, Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores, Nat. Methods, 2011, 8, 353–359.

    Article  CAS  PubMed  Google Scholar 

  15. H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and J. Yoon, A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions, Chem. Soc. Rev., 2008, 37, 1465–1472.

    Article  CAS  PubMed  Google Scholar 

  16. X. Chen, T. Pradhan, F. Wang, J. S. Kim and J. Yoon, Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives, Chem. Rev., 2012, 112, 1910–1956.

    Article  CAS  PubMed  Google Scholar 

  17. H. Zheng, X.-Q. Zhan, Q.-N. Bian and X.-J. Zhang, Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors, Chem. Commun., 2013, 49, 429–447.

    Article  CAS  Google Scholar 

  18. D. T. Quang and J. S. Kim, Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens, Chem. Rev., 2010, 110, 6280–6301.

    Article  CAS  Google Scholar 

  19. Y. Yang, Q. Zhao, W. Feng and F. Li, Luminescent Chemodosimeters for Bioimaging, Chem. Rev., 2013, 113, 192–270.

    Article  CAS  PubMed  Google Scholar 

  20. W. Zhang, B. Tang, X. Liu, Y. Liu, K. Xu, J. Ma, L. Tong and G. Yang, A highly sensitive acidic pH fluorescent probe and its application to HepG2 cells, Analyst, 2009, 134, 367–371.

    Article  CAS  PubMed  Google Scholar 

  21. A. Liu, M. Hong, W. Yang, S. Lu and D. Xu, One-pot synthesis of a new rhodamine-based dually-responsive pH sensor and its application to bioimaging, Tetrahedron, 2014, 70, 6974–6979.

    Article  CAS  Google Scholar 

  22. Z. Li, S. Wu, J. Han and S. Han, Imaging of intracellular acidic compartments with a sensitive rhodamine based fluorogenic pH sensor, Analyst, 2011, 136, 3698–3706.

    Article  CAS  PubMed  Google Scholar 

  23. K. Talley and E. Alexov, On the pH-optimum of activity and stability of proteins, Proteins, 2010, 78, 2699–2706.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. R. Martínez-Zaguilán, B. F. Chinnock, S. Wald-Hopkins, M. Bernas, D. Way, M. H. Witte and R. J. Gillies, [Ca2+]i and pHin homeostasis in kaposi sarcoma cells, Cell. Physiol. Biochem., 1996, 6, 169–148.

    Article  Google Scholar 

  25. D. Perez-Sala, D. Collado-Escobar and D. F. Mollinedo, Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH- dependent endonuclease, J. Biol. Chem., 1995, 270, 6235–6242.

    Article  CAS  PubMed  Google Scholar 

  26. T. A. Davies, R. E. Fine, R. J. Johnson, C. A. Levesque, W. H. Rathbun, K. F. Seetoo, S. J. Smith, G. Strohmeier, L. Volicer, L. Delva and E. R. Simons, Non-age Related Differences in Thrombin Responses by Platelets from Male Patients with Advanced Alzheimer’s Disease, Biochem. Biophys. Res. Commun., 1993, 194, 537–543.

    Article  CAS  PubMed  Google Scholar 

  27. W. Pan, H. Wang, L. Yang, Z. Yu, N. Li and B. Tang, Ratiometric Fluorescence Nanoprobes for Subcellular pH Imaging with a Single-Wavelength Excitation in Living Cells, Anal. Chem., 2016, 88, 6743–6748.

    Article  CAS  PubMed  Google Scholar 

  28. H. Li, H. Guan, X. Duan, J. Hu, G. Wang and Q. Wang, An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam, Org. Biomol. Chem., 2013, 11, 1805–1809.

    Article  CAS  PubMed  Google Scholar 

  29. K.-K. Yu, K. Li, J.-T. Hou, H.-H. Qin, Y.-M. Xie, C.-H. Qian and X.-Q. Yu, Rhodamine-based lysosome-targeted fluorescence probes: high pH sensitivity and their imaging application in living cells, RSC Adv., 2014, 4, 33975–33980.

    Article  CAS  Google Scholar 

  30. H. Li, C. Wang, M. She, Y. Zhu, J. Zhang, Z. Yang, P. Liu, Y. Wang and J. Li, Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change, Anal. Chim. Acta, 2015, 900, 97–102.

    Article  CAS  PubMed  Google Scholar 

  31. E. S. Trombetta, M. Ebersold, W. Garrett, M. Pypaert and I. Mellman, Activation of Lysosomal Function During Dendritic Cell Maturation, Science, 2003, 299, 1400–1403.

    Article  CAS  PubMed  Google Scholar 

  32. C. Nilsson, K. Kâgedal, U. Johansson and K. Öllinger, Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry, Methods Cell Sci., 2003, 25, 185–194.

    Article  PubMed  Google Scholar 

  33. H. Montenegro, M. Di Paolo, D. Capdevila, P. F. Aramendía and M. L. Bossi, The mechanism of the photochromic transformation of spirorhodamines, Photochem. Photobiol. Sci., 2012, 11, 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  34. R. V. Sondergaard, N. M. Christensen, J. R. Henriksen, E. K. Pramod Kumar, K. Almdal and T. L. Andresen, Facing the Design Challenges of Particle-Based Nanosensors for Metabolite Quantification in Living Cells, Chem. Rev., 2015, 115, 8344–8378.

    Article  PubMed  CAS  Google Scholar 

  35. K. Wang, X. He, X. Yang and H. Shi, Functionalized Silica Nanoparticles: A Platform for Fluorescence Imaging at the Cell and Small Animal Levels, Acc. Chem. Res., 2013, 46, 1367–1376.

    Article  CAS  PubMed  Google Scholar 

  36. A. Burns, H. Ow and U. Wiesner, Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology, Chem. Soc. Rev., 2006, 35, 1028–1042.

    Article  CAS  PubMed  Google Scholar 

  37. F. Wang, W. Tan, Y. Zhang, X. Fan and M. Wang, Luminescent nanomaterials for biological Labelling, Nanotechnology, 2006, 17, RI–R13.

    Google Scholar 

  38. L. Wang, C. Yang and W. Tan, Dual-Luminophore-Doped Silica Nanoparticles for Multiplexed Signaling, Nano Lett., 2005, 5, 37–43.

    Article  CAS  PubMed  Google Scholar 

  39. F. Gao, L. Tang, L. Dai and L. Wang, A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles, Spectrochim. Acta, Part A, 2007, 67, 517–521.

    Article  CAS  Google Scholar 

  40. R. P. Bagwe, L. R. Hilliard and W. Tan, Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding, Langmuir, 2006, 22, 4357–4362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. M. Rosenholm, A. Meinander, E. Peuhu, R. Niemi, J. E. Eriksson, C. Sahlgren and M. Lindén, Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells, ACS Nano, 2009, 3, 197–206.

    Article  CAS  PubMed  Google Scholar 

  42. B. Korzeniowska, R. Nooney, D. Wencel and C. McDonagh, Silica nanoparticles for cell imaging and intracellular sensing, Nanotechnology, 2013, 24, 442002, and references therein.

    Article  CAS  PubMed  Google Scholar 

  43. W. Stöber, A. Fink and E. J. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Colloid Interface Sci., 1968, 26, 62–69.

    Article  Google Scholar 

  44. O. S. Wolfbeis, An overview of nanoparticles commonly used in fluorescent bioimaging, Chem. Soc. Rev., 2015, 44, 4743–4768.

    Article  CAS  PubMed  Google Scholar 

  45. A. Van Blaaderen and A. Vrij, Synthesis and Characterization of Colloidal Dispersions of Fluorescent, Monodisperse Silica Spheres, Langmuir, 1992, 8, 2921–2931.

    Article  Google Scholar 

  46. C. Argyo, V. Weiss, C. Bräuchle and T. Bein, Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery, Chem. Mater., 2014, 26, 435–451.

    Article  CAS  Google Scholar 

  47. V. Cauda, A. Schlossbauer, J. Kecht, A. Zürner and T. Bein, Multiple Core-Shell Functionalized Colloidal Mesoporous Silica Nanoparticles, J. Am. Chem. Soc., 2009, 131, 11361–11370.

    Article  CAS  PubMed  Google Scholar 

  48. S. Hornig, C. Biskup, A. Gräfe, J. Wotschadlo, T. Liebert, G. J. Mohr and T. Heinze, Biocompatible fluorescent nanoparticles for pH-sensoring, Soft Matter, 2008, 4, 1169–1172.

    Article  CAS  PubMed  Google Scholar 

  49. J. Lei, L. Wang and J. Zhang, Ratiometric pH sensor based on mesoporous silica nanoparticles and Förster resonance energy transfer, Chem. Commun., 2010, 46, 8445–8447.

    Article  CAS  Google Scholar 

  50. S. Wu, Z. Li, J. Han and S. Han, Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosome acidity, Chem. Commun., 2011, 47, 11276–11278.

    Article  CAS  Google Scholar 

  51. M. H. Marchena, M. Granada, A. V. Bordoni, M. Joselevich, H. Troiani, F. J. Williams and A. Wolosiuk, Organized thiol functional groups in mesoporous core shell colloids, J. Solid State Chem., 2012, 187, 97–102.

    Article  CAS  Google Scholar 

  52. E. Herz, H. Ow, D. Bonner, A. Burns and U. Wiesner, Dye structure-optical property correlations in near-infrared fluorescent core-shell silica nanoparticles, J. Mater. Chem., 2009, 19, 6341–6347.

    Article  CAS  Google Scholar 

  53. The properties of compounds 2 and 4 were found to be identical, within experimental errors. Thus, compound 2 was used as model compound, to avoid any issues with the stability of the maleimide group.

  54. X. Xie, J. Zhai, Z. Jarolímová and E. Bakker, Determination of pKa Values of Hydrophobic Colorimetric pH Sensitive Probes in Nanospheres, Anal. Chem., 2016, 88, 3015–3018.

    Article  CAS  PubMed  Google Scholar 

  55. K.-M. Kim, H. M. Kim, W.-J. Lee, C.-W. Lee, T. Kim, J.-K. Lee, J. Jeong, S.-M. Paek and J.-M. Oh, Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica, Int. J. Nanomed., 2014, 9(Suppl 2), 29–40.

    Google Scholar 

  56. A. Zane, C. McCracken, D. A. Knight, T. Young, A. D. Lutton, J. W. Olesik, W. J. Waldman and P. K. Dutta, Uptake of bright fluorophore core-silica shell nanoparticles by biological systems, Int. J. Nanomed., 2015, 10, 1547–1567.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PFA, AW and AVB are staff members from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina). MDP acknowledges a PhD fellowship and MJR a post-doctoral fellowship from CONICET. This work was performed under financial support from grants from UBA (UBACyT-20020110100203), CONICET (PIP11220130100795 & PIP 1220130100121) and ANPCyT (PICT 2012-2087 & PICT 2013-1931).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Bossi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Paolo, M., Roberti, M.J., Bordoni, A.V. et al. Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators. Photochem Photobiol Sci 18, 155–165 (2019). https://doi.org/10.1039/c8pp00133b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00133b

Navigation