Skip to main content

Advertisement

Log in

Photodynamic therapy of cancer. Basic principles and applications

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a minimally invasive therapeutic modality approved for clinical treatment of several types of cancer and non-oncological disorders. In PDT, a compound with photosensitising properties (photosensitiser, PS) is selectively accumulated in malignant tissues. The subsequent activation of the PS by visible light, preferentially in the red region of the visible spectrum (λ≥600 nm), where tissues are more permeable to light, generates reactive oxygen species, mainly singlet oxygen (1O2), responsible for cytotoxicity of neoplastic cells and tumour regression. There are three main mechanisms described by which 1O2 contributes to the destruction of tumours by PDT: direct cellular damage, vascular shutdown and activation of immune response against tumour cells. The advantages of PDT over other conventional cancer treatments are its low systemic toxicity and its ability to selectively destroy tumours accessible to light. Therefore, PDT is being used for the treatment of endoscopically accessible tumours such as lung, bladder, gastrointestinal and gynaecological neoplasms, and also in dermatology for the treatment of non-melanoma skin cancers (basal cell carcinoma) and precancerous diseases (actinic keratosis). Photofrin®, ALA and its ester derivatives are the main compounds used in clinical trials, though newer and more efficient PSs are being evaluated nowadays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3: 380–387

    Article  PubMed  CAS  Google Scholar 

  2. Juzeniene A, Peng Q, Moan J (2007) Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochem Photobiol Sci 6:1234–1245

    Article  PubMed  CAS  Google Scholar 

  3. Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  PubMed  CAS  Google Scholar 

  4. Gomer CJ, Ferrario A, Luna M et al (2006) Photodynamic therapy: combined modality approaches targeting the tumor microenvironment. Lasers Surg Med 38:516–521

    Article  PubMed  Google Scholar 

  5. Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553

    Article  PubMed  CAS  Google Scholar 

  6. Pervaiz S, Olivo M (2006) Art and science of photodynamic therapy. Clin Exp Pharmacol Physiol 33:551–556

    Article  PubMed  CAS  Google Scholar 

  7. Kessel D, Chang CK, Musselman B (1985) Chemical, biologic and biophysical studies on ‘hematoporphyrin derivative’. Adv Exp Med Biol 193:213–227

    PubMed  CAS  Google Scholar 

  8. Brown SB, Mellish KJ (2001) Verteporfin: a mile-stone in ophthalmology and photodynamic therapy. Expert Opin Pharmacother 2:351–361

    Article  PubMed  CAS  Google Scholar 

  9. Detty MR, Gibson SL, Wagner SJ (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47:3897–3915

    Article  PubMed  CAS  Google Scholar 

  10. Stockert JC, Canete M, Juarranz A et al (2007) Porphycenes: facts and prospects in photodynamic therapy of cancer. Curr Med Chem 14:997–1026

    Article  PubMed  CAS  Google Scholar 

  11. Babilas P, Landthaler M, Szeimies RM (2006) Photodynamic therapy in dermatology. Eur J Dermatol 16:340–348

    PubMed  CAS  Google Scholar 

  12. Casas A, Batlle A (2002) Rational design of 5-aminolevulinic acid derivatives aimed at improving photodynamic therapy. Curr Med Chem Anticancer Agents 2:465–475

    Article  PubMed  CAS  Google Scholar 

  13. Kauppinen R (2005) Porphyrias. Lancet 365:241–252

    PubMed  CAS  Google Scholar 

  14. Kennedy JC, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 6:143–148

    Article  PubMed  CAS  Google Scholar 

  15. Kloek J, Beijersbergen van Henegouwen GMJ (1996) Prodrugs of 5-aminolevulinic acid for photodynamic therapy. Photochem Photobiol, 1996;64:994–1000

    PubMed  CAS  Google Scholar 

  16. Gaullier JM, Berg K, Peng Q et al (1997) Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res 57: 1481–1486

    PubMed  CAS  Google Scholar 

  17. Lopez RF, Lange N, Guy R, Bentley MV (2004) Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters. Adv Drug Deliv Rev 56:77–94

    Article  PubMed  CAS  Google Scholar 

  18. Schmidbauer J, Witjes F, Schmeller N et al (2004) Improved detection of urothelial carcinoma in situ with hexaminolevulinate fluorescence cystoscopy. J Urol 171:135–138

    Article  PubMed  Google Scholar 

  19. Diepgen TL, Mahler V (2002) The epidemiology of skin cancer. Br J Dermatol 146[Suppl 61]:1–6

    Article  PubMed  Google Scholar 

  20. Szeimies RM, Karrer S, Radakovic-Fijan S et al (2002) Photodynamic therapy using topical methyl 5-aminolevulinate compared with cryotherapy for actinic keratosis: a prospective, randomized study. J Am Acad Dermatol 47:258–262

    Article  PubMed  CAS  Google Scholar 

  21. Szeimies RM (2007) Methyl aminolevulinate-photodynamic therapy for basal cell carcinoma. Dermatol Clin 25:89–94

    Article  PubMed  CAS  Google Scholar 

  22. Tarstedt M, Rosdahl I, Berne B et al (2005) A randomized multicenter study to compare two treatment regimens of topical methyl aminolevulinate (Metvix)-PDT in actinic keratosis of the face and scalp. Acta Derm Venereol 85:424–428

    Article  PubMed  CAS  Google Scholar 

  23. Sharfaei S, Juzenas P, Moan J, Bissonnette R (2002) Weekly topical application of methyl aminolevulinate followed by light exposure delays the appearance of UV-induced skin tumours in mice. Arch Dermatol Res 294:237–242

    PubMed  CAS  Google Scholar 

  24. Caty V, Liu Y, Viau G, Bissonnette R (2006) Multiple large surface photodynamic therapy sessions with topical methylaminolaevulinate in PTCH heterozygous mice. Br J Dermatol 154:740–742

    PubMed  CAS  Google Scholar 

  25. Solban N, Rizvi I, Hasan T (2006) Targeted photodynamic therapy. Lasers Surg Med 38:522–531

    Article  PubMed  Google Scholar 

  26. Chen B, Pogue BW, Hasan T (2005) Liposomal delivery of photosensitising agents. Expert Opin Drug Deliv 2:477–487

    Article  PubMed  CAS  Google Scholar 

  27. Kessel D (2002) Relocalization of cationic porphyrins during photodynamic therapy. Photochem Photobiol Sci 1:837–840

    Article  PubMed  CAS  Google Scholar 

  28. Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107

    PubMed  CAS  Google Scholar 

  29. Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1:1–21

    Article  PubMed  CAS  Google Scholar 

  30. Villanueva A, Vidania R, Stockert JC et al (2003) Photodynamic effects on cultured tumor cells: cytoskeleton alterations and cell death mechanisms. Handbook of photochemistry and photobiology (Ed.: HS Nalwa) American Scientific Publishers, California, USA 4:79–117

    Google Scholar 

  31. Kessel D, Vicente MG, Reiners JJ Jr (2006) Initiation of apoptosis and autophagy by photodynamic therapy. Autophagy 2:289–290

    PubMed  CAS  Google Scholar 

  32. McDaid HM, Horwitz SB (2001) Selective potentiation of paclitaxel (taxol)-induced cell death by mitogen-activated protein kinase inhibition in human cancer cell lines. Mol Pharmacol 60:290–301

    PubMed  CAS  Google Scholar 

  33. Galaz S, Espada J, Stockert JC et al (2005) Loss of E-cadherin mediated cell-cell adhesion as an early trigger of apoptosis induced by photodynamic treatment. J Cell Physiol 205:86–96

    Article  PubMed  CAS  Google Scholar 

  34. Juarranz A, Espada J, Stockert JC et al (2001) Photodamage induced by Zinc(II)-phthalocyanine to microtubules, actin, alpha-actinin and keratin of HeLa cells. Photochem Photobiol 73:283–289

    Article  PubMed  CAS  Google Scholar 

  35. Rello-Varona S, Gamez A, Moreno V et al (2006) Metaphase arrest and cell death induced by etoposide on HeLa cells. Int J Biochem Cell Biol 38:2183–2195

    Article  PubMed  CAS  Google Scholar 

  36. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545

    Article  PubMed  CAS  Google Scholar 

  37. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5:423–435

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángeles Juarranz.

Additional information

Supported by an unrestricted educational grant from Roche Farma S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juarranz, Á., Jaén, P., Sanz-Rodríguez, F. et al. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10, 148–154 (2008). https://doi.org/10.1007/s12094-008-0172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-008-0172-2

Keywords

Navigation