Skip to main content
Log in

First characterisation of a CPD-class I photolyase from a UV-resistant extremophile isolated from High-Altitude Andean Lakes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

UV-resistant Acinetobacter sp. Ver3 isolated from High-Altitude Andean Lakes (HAAL) in Argentinean Puna, one of the highest UV exposed ecosystems on Earth, showed efficient DNA photorepairing ability, coupled to highly efficient antioxidant enzyme activities in response to UV-B stress. We herein present the cloning, expression, and functional characterization of a cyclobutane pyrimidine dimer (CPD)-class I photolyase (Ver3Phr) from this extremophile to prove its involvement in the previously noted survival capability. Spectroscopy of the overexpressed and purified protein identified flavin adenine dinucleotide (FAD) and 5,10-methenyltetrahydrofolate (MTHF) as chromophore and antenna molecules, respectively. All functional analyses were performed in parallel with the ortholog E. coli photolyase. Whereas the E. coli enzyme showed the FAD chromophore as a mixture of oxidised and reduced states, the Ver3 chromophore always remained partly (including the semiquinone state) or fully reduced under all experimental conditions tested. Functional complementation of Ver3Phr in Phr-RecA E. coli strains was assessed by traditional UFC counting and measurement of DNA bipyrimidine photoproducts by HPLC coupled with electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) detection. The results identified strong photoreactivation ability in vivo of Ver3Phr while its nonphotoreactivation function, probably related with the stimulation of nucleotide excision repair (NER), was not as manifest as for EcPhr. Whether this is a question of the approach using an exogenous photolyase incorporated in a non-genuine host or a fundamental different behaviour of a novel enzyme from an exotic environment will need further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Seufferheld, H. M. Alvarez and M. E. Farias, Role of polyphosphates in microbial adaptation to extreme environments. Appl. Environ. Microbiol., 2008, 74, 5867–5874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. V. H. Albarracín, J. R. Dib, O. F. Ordoñez and M. E. Farias, A Harsh Life to Indigenous Proteobacteria at the Andean Mountains: Microbial Diversity and Resistance Mechanisms Towards Extreme Conditions, in Proteobacteria: Phylogeny, Metabolic Diversity and Ecological Effects, ed. M. L. Sezenna, Nova Science Publishers, 2011, pp. 91–131.

    Google Scholar 

  3. V. Fernandez-Zenoff, F. Sineriz and M. E. Farias, Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl. Environ. Microbiol., 2006, 72, 7857–7863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. M. R. Flores, O. F. Ordonez, M. J. Maldonado and M. E. Farias, Isolation of UV-B resistant bacteria from two high altitude Andean lakes (4,400 m) with saline and non saline conditions. J. Gen. Appl. Microbiol., 2009, 55, 447–458.

    Article  PubMed  CAS  Google Scholar 

  5. J. Dib, J. Motok, V. F. Zenoff, O. Ordonez and M. E. Farias, Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (Above 4400 m) andean wetlands. Curr. Microbiol., 2008, 56, 510–517.

    Article  PubMed  CAS  Google Scholar 

  6. C. Di Capua, A. Bortolotti, M. E. Farias and N. Cortez, UV-resistant Acinetobacter sp isolates from Andean wetlands display high catalase activity. FEMS Microbiol. Lett., 2011, 317, 181–189.

    Article  PubMed  CAS  Google Scholar 

  7. O. F. Ordonez, M. R. Flores, J. R. Dib, A. Paz and M. E. Farias, Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb. Ecol., 2009, 58, 461–473.

    Article  PubMed  Google Scholar 

  8. M. E. Farias, N. Rascovan, D. M. Toneatti, V. H. Albarracin, M. R. Flores, D. G. Poire, M. M. Collavino, O. M. Aguilar, M. P. Vazquez and L. Polerecky, The discovery of stromatolites developing at 3,570 m above sea level in a High-Altitude volcanic Lake Socompa, Argentinean Andes. PLoS One, 2013, 8.

    Google Scholar 

  9. V. H. Albarracín, G. P. Pathak, T. Douki, J. Cadet, C. D. Borsarelli, W. Gärtner and M. E. Farias, Extremophilic Acinetobacter Strains from High-Altitude Lakes in Argentinean Puna: Remarkable UV-B resistance and efficient DNA damage repair. Orig. Life Evol. Biosph., 2012, 42, 201–221.

    Article  PubMed  CAS  Google Scholar 

  10. S. Weber, Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochim. Biophys. Acta, 2005, 1707, 1–23.

    Article  PubMed  CAS  Google Scholar 

  11. S. Akasaka and K. Yamamoto, Construction of Escherichia coli K12 PHR Deletion and insertion mutants by gene replacement. Mutat. Res., 1991, 254, 27–35.

    Article  PubMed  CAS  Google Scholar 

  12. G. P. Pathak, A. Ehrenreich, A. Losi, W. R. Streit, W. Gärtner, Novel blue light-sensitive proteins from a metagenomic approach. Environ. Microbiol., 2009, 11, 2388–2399.

    Article  PubMed  CAS  Google Scholar 

  13. O. Jahn, D. Hesse, M. Reinelt and H. D. Kratzin, Technical innovations for the automated identification of gel-separated proteins by MALDI-TOF mass spectrometry. Anal. Bioanal. Chem., 2006, 386, 92–103.

    Article  PubMed  CAS  Google Scholar 

  14. S. Guindon and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol., 2003, 52, 696–704.

    Article  PubMed  Google Scholar 

  15. D. T. Jones, W. R. Taylor and J. M. Thornton, The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci., 1992, 8, 275–282.

    PubMed  CAS  Google Scholar 

  16. I. Letunic, R. R. Copley, B. Pils, S. Pinkert, J. Schultz and P. Bork, SMART 5: domains in the context of genomes and networks. Nucleic Acids Res., 2006, 34, D257–D260.

    Article  PubMed  CAS  Google Scholar 

  17. N. Ozturk, Y.-T. Kao, C. P. Selby, I. H. Kavakli, C. L. Partch, D. Zhong and A. Sancar, Purification and characterization of a type III photolyase from Caulobacter crescentus. Biochemistry, 2008, 47, 10255–10261.

    Article  PubMed  CAS  Google Scholar 

  18. J. L. Johnson, S. Hammalvarez, G. Payne, G. B. Sancar, K. V. Rajagopalan and A. Sancar, Identification of the 2nd chromophor of Escherichia coli and yeast DNA photolyases as 5,10-Methenyltetrahydrofolate. Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 2046–2050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. S. T. Kim, P. F. Heelis, T. Okamura, Y. Hirata, N. Mataga and A. Sancar, Determination of rates and yields of interchromophore (folate––flavin) energy transfer and intermolecular (flavin––DNA) electron transfer in Escherichia coli photolyase by time-resolved fluorescence and absorption spectroscopy. Biochemistry, 1991, 30, 11262–11270.

    Article  PubMed  CAS  Google Scholar 

  20. T. Douki, M. Court, S. Sauvaigo, F. Odin and J. Cadet, Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J. Biol. Chem., 2000, 275, 11678–11685.

    Article  PubMed  CAS  Google Scholar 

  21. S. Mouret, P. Bogdanowicz, M. J. Haure, N. Castex-Rizzi, J. Cadet, A. Favier and T. Douki, Assessment of the photoprotection properties of sunscreens by chromatographic measurement of DNA damage in skin explants. Photochem. Photobiol., 2011, 87, 109–116.

    Article  PubMed  CAS  Google Scholar 

  22. T. Douki and J. Cadet, Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry, 2001, 40, 2495–2501.

    Article  PubMed  CAS  Google Scholar 

  23. C. P. Selby and A. Sancar, A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 17696–17700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Y. Geisselbrecht, S. Fruhwirth, C. Schroeder, A. J. Pierik, G. Klug and L. O. Essen, CryB from Rhodobacter sphaeroides: a unique class of cryptochromes with new cofactors. EMBO Rep., 2012, 13, 223–229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. A. Sancar, Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev., 2003, 103, 2203–2237.

    Article  PubMed  CAS  Google Scholar 

  26. J. J. Kim and G. W. Sundin, Construction and analysis of photolyase mutants of Pseudomonas aeruginosa and Pseudomonas syringae: contribution of photoreactivation, nucleotide excision repair, and mutagenic DNA repair to cell survival and mutability following exposure to UV-B radiation. Appl. Environ. Microbiol., 2001, 67, 1405–1411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. H. W. Park, S. T. Kim, A. Sancar and J. Deisenhofer, Crystal structure of E. coli photolyase at 2.3A resolution. Biophys. J., 1995, 68, A324.

    Google Scholar 

  28. Y. T. Kao, C. Saxena, T. F. He, L. J. Guo, L. J. Wang, A. Sancar and D. P. Zhong, Ultrafast dynamics of flavins in five redox states. J. Am. Chem. Soc., 2008, 130, 13132–13139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. L. Valle, F. E. M. Vieyra and C. D. Borsarelli, Hydrogen-bonding modulation of excited-state properties of flavins in a model of aqueous confined environment. Photochem. Photobiol. Sci., 2012, 11, 1051–1061.

    Article  PubMed  CAS  Google Scholar 

  30. D. Chandrasekhar, B. Van Houten, In vivo formation and repair of cyclobutane pyrimidine dimers and 6-4 photoproducts measured at the gene and nucleotide level in Escherichia coli. Mutat. Res., Fundam. Mol. Mech. Mutagen., 2000, 450, 19–40.

    Article  CAS  Google Scholar 

  31. G. B. Sancar, Enzymatic photoreactivation: 50 years and counting. Mutat. Res., Fundam. Mol. Mech. Mutagen., 2000, 451, 25–37.

    Article  CAS  Google Scholar 

  32. J. van Noort, K. O. van der Werf, B. G. de Grooth and J. Greve, Conformation of individual photolyase dna complexes studied by atomic force microscopy. Biophys. J., 1999, 76, A386–A386.

    Google Scholar 

  33. M. C. DeRosa, A. Sancar and J. K. Barton, Electrically monitoring DNA repair by photolyase. Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10788–10792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. K. Yamamoto, M. Satake, H. Shinagawa and Y. Fujiwara, Amelioration of the Ultraviolet sensitivity of an Escherichia coli RECA mutant in the dark by photoreactivating enzyme. Mol. Gen. Genet., 1983, 190, 511–515.

    Article  PubMed  CAS  Google Scholar 

  35. A. Sancar, K. A. Franklin and G. B. Sancar, Escherichia coli DNA photolyase stimulates UVR-ABC excision nuclease in vitro. Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 7397–7401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. G. B. Sancar and F. W. Smith, Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. Mol. Cell. Biol., 1989, 9, 4767–4776.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. R. P. Sinha and D. P. Hader, UV-induced DNA damage and repair: a review. Photochem. Photobiol. Sci., 2002, 1, 225–236.

    Article  PubMed  CAS  Google Scholar 

  38. Z. Ozer, J. T. Reardon, D. S. Hsu, K. Malhotra and A. Sancar, The other function of DNA photolyase: Stimulation of excision repair of chemical damage to DNA. Biochemistry, 1995, 34, 15886–15889.

    Article  PubMed  CAS  Google Scholar 

  39. G. M. Myles, B. Vanhouten and A. Sancar, Utilization of DNA photolyase, pyrimidine dimer endonucleases, and alkalihydrolysis in the analysis of aberrant ABC excinuclease incisions adjacent to UV-induced DNA photoproducts. Nucleic Acids Res., 1987, 15, 1227–1243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. W. L. Carrier and R. B. Setlow, Excision of Pyrimidine Dimers From Irradiated Deoxyribonucleic Acid in vitro. Biochim. Biophys. Acta, 1966, 129, 318–325.

    Article  CAS  Google Scholar 

  41. D. Vlcek, S. Podstavkova and E. Miadokova, Interactions between photolyase and dark repair processes in Chlamydomonas reinhardtii. Mutat. Res.-DNA Repair, 1995, 336, 251–256.

    Article  PubMed  CAS  Google Scholar 

  42. F. Thoma, Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. EMBO J., 1999, 18, 6585–6598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. W. Yang, Surviving the sun: Repair and bypass of DNA UV lesions. Protein Sci., 2011, 20, 1781–1789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. G. B. Sancar, DNA photolyases: Physical properties, action mechanism, and roles in dark repair. Mutat. Res., 1990, 236, 147–160.

    Article  PubMed  CAS  Google Scholar 

  45. A. Sancar, F. W. Smith and G. B. Sancar, Purification of Escherichia coli DNA photolyase. J. Biol. Chem., 1984, 259, 6028–6032.

    Article  PubMed  CAS  Google Scholar 

  46. S. Bequer Urbano, V. H. Albarracín, O. F. Ordonez, M. E. Farias and H. M. Alvarez, Lipid storage in High-Altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium. Extremophiles, 2013, 17, 217–227.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Virginia Helena Albarracín or Wolfgang Gärtner.

Additional information

Electronic supplementary information (ESI) available: Table S2 and Fig. S1, S3 and S4. See DOI: 10.1039/c3pp50399b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albarracín, V.H., Simon, J., Pathak, G.P. et al. First characterisation of a CPD-class I photolyase from a UV-resistant extremophile isolated from High-Altitude Andean Lakes. Photochem Photobiol Sci 13, 739–751 (2014). https://doi.org/10.1039/c3pp50399b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50399b

Navigation