Skip to main content
Log in

CRISPR-Combo–mediated orthogonal genome editing and transcriptional activation for plant breeding

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

CRISPR–Cas nuclease systems, base editors, and CRISPR activation have greatly advanced plant genome engineering. However, the combinatorial approaches for multiplexed orthogonal genome editing and transcriptional regulation were previously unexploited in plants. We have recently established a single Cas9 protein-based CRISPR-Combo platform, enabling efficient multiplexed orthogonal genome editing (double-strand break–mediated genome editing or base editing) and transcriptional activation in plants via engineering the single guide RNA (sgRNA) structure. Here, we provide step-by-step instructions for constructing CRISPR-Combo systems for speed breeding of transgene-free, genome-edited Arabidopsis plants and enhancing rice regeneration with more heritable targeted mutations in a hormone-free manner. We also provide guidance on designing efficient sgRNA, Agrobacterium-mediated transformation of Arabidopsis and rice, rice regeneration without exogenous plant hormones, gene editing evaluation and visual identification of transgene-free Arabidopsis plants with high editing activity. With the use of this protocol, it takes ~2 weeks to establish the CRISPR-Combo systems, 4 months to obtain transgene-free genome-edited Arabidopsis plants and 4 months to obtain rice plants with enrichment of heritable targeted mutations by hormone-free tissue culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic of Cas9-Act3.0 and CBE-Cas9n-Act3.0 CRISPR-Combo systems.
Fig. 2: Workflow and timeline of the CRISPR-Combo experiments.
Fig. 3: Schematic illustrations of assembling multiplexed sgRNA expression vectors.
Fig. 4: Anticipated results of CBE-Cas9n-Act3.0-mediated speed breeding of transgene-free, genome-edited Arabidopsis plants via activation of AtFT.
Fig. 5: Anticipated results of Cas9-Act3.0-mediated rice regeneration and heritable mutations in a hormone-free manner via Combo-mediated activation of OsBBM1.

Similar content being viewed by others

Data availability

No new data were generated for this protocol, and all presented data in this protocol are available in the primary supporting paper23.

References

  1. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jinek, M. et al. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  PubMed  Google Scholar 

  5. Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 863–867 (2016).

    Article  Google Scholar 

  6. Zhu, X. et al. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Nat. Struct. Mol. Biol. 26, 679–685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu, Y. et al. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Mol. Plant 10, 1242–1245 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Meng, X. et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol. Plant 10, 1238–1241 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, T. P., Newby, G. A. & Liu, D. R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 16, 1089–1128 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Molla, K. A., Sretenovic, S., Bansal, K. C. & Qi, Y. Precise plant genome editing using base editors and prime editors. Nat. Plants 7, 1166–1187 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Pan, C., Sretenovic, S. & Qi, Y. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Curr. Opin. Plant Biol. 60, 101980 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Pan, C. et al. CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nat. Plants 7, 942–953 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019).

    Article  PubMed  Google Scholar 

  21. Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pan, C. et al. Boosting plant genome editing with a versatile CRISPR-Combo system. Nat. Plants 8, 513–525 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Kiani, S. et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods 12, 1051–1054 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Breinig, M. et al. Multiplexed orthogonal genome editing and transcriptional activation by Cas12a. Nat. Methods 16, 51–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Ren, Q. et al. Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnol. J. 19, 2052–2068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Atkins, P. A. & Voytas, D. F. Overcoming bottlenecks in plant gene editing. Curr. Opin. Plant Biol. 54, 79–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Khanday, I., Santos-Medellín, C. & Sundaresan, V. Rice embryogenic trigger BABY BOOM1 promotes somatic embryogenesis by upregulation of auxin biosynthesis genes. N. Phytol. 238, 673–687 (2020).

    Article  Google Scholar 

  29. Shen, J. P. et al. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14, 573–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boettcher, M. et al. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat. Biotechnol. 36, 170–178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Debernardi, J. M. & Rowan, B. A. Make it a Combo. Nat. Plants 8, 457–458 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grünewald, J. et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861–864 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang, X. et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 38, 856–860 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Sakata, R. C. et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat. Biotechnol. 38, 865–869 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 38, 875–882 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Li, C. et al. SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biol. 21, 141 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boutilier, K. et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14, 1737–1749 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zuo, J., Niu, Q. W., Frugis, G. & Chua, N. H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 30, 349–359 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Debernardi, J. M. et al. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38, 1274–1279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qiu, F. et al. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. Sci. China Life Sci. 65, 731–738 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Dong, C., Fontana, J., Patel, A., Carothers, J. M. & Zalatan, J. G. Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat. Commun. 9, 2489 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fontana, J. et al. Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. Nat. Commun. 11, 1–11 (2020).

    Article  Google Scholar 

  47. Li, Z. et al. A potent Cas9-derived gene activator for plant and mammalian cells. Nat. Plants 3, 930–936 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huminiecki, Ł. & Horbańczuk, J. Can we predict gene expression by understanding proximal promoter architecture? Trends Biotechnol. 35, 530–546 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Lai, H. Y. et al. iProEP: a computational predictor for predicting promoter. Mol. Ther. Nucleic Acids 17, 337–346 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Umarov, R., Kuwahara, H., Li, Y., Gao, X. & Solovyev, V. Promoter analysis and prediction in the human genome using sequence-based deep learning models. Bioinformatics 35, 2730–2737 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Shahmuradov, I. A., Umarov, R. K. & Solovyev, V. V. TSSPlant: a new tool for prediction of plant Pol II promoters. Nucleic Acids Res. 45, e65 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manghwar, H. et al. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv. Sci. 7, 1902312 (2020).

    Article  CAS  Google Scholar 

  54. Liu, H. et al. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol. Plant 10, 530–532 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Chuai, G. H., Wang, Q. L. & Liu, Q. In silico meets in vivo: towards computational CRISPR-based sgRNA design. Trends Biotechnol. 35, 12–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Z. P. et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee, K. et al. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol. J. 17, 362–372 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, X. et al. Efficient base editing in methylated regions with a human apobec3a-cas9 fusion. Nat. Biotechnol. 36, 946–949 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, Y. et al. CRISPR-BETS: a base-editing design tool for generating stop codons. Plant Biotechnol. J. 20, 499–510 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Cui, Y., Xu, J., Cheng, M., Liao, X. & Peng, S. Review of CRISPR/Cas9 sgRNA design tools. Interdiscip. Sci. 10, 455–465 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Blin, K., Shaw, S., Tong, Y. & Weber, T. Designing sgRNAs for CRISPR-BEST base editing applications with CRISPy-web 2.0. Synth. Syst. Biotechnol. 5, 99–102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hwang, G.-H. et al. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics 19, 542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ren, Q. et al. PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nat. Plants 7, 25–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Billon, P. et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol. Cell 67, 1068–1079.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272–W276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, H. et al. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics 31, 3676–3678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gong, X., Zhang, T., Xing, J., Wang, R. & Zhao, Y. Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants. aBIOTECH 1, 1–5 (2020).

    Article  PubMed  Google Scholar 

  70. Pan, C. & Qi, Y. CRISPR-Act3.0-based highly efficient multiplexed gene activation in plants. Curr. Protoc. 2, e365 (2022).

    CAS  PubMed  Google Scholar 

  71. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, K. (ed.) Agrobacterium Protocols Vol. 1 (Humana Press, 2006).

  74. Liu, Q. et al. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci. China Life Sci. 62, 1–7 (2019).

    Article  PubMed  Google Scholar 

  75. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Park, J., Lim, K., Kim, J. S. & Bae, S. Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33, 286–288 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. You, Q. et al. CRISPRMatch: an automatic calculation and visualization tool for high-throughput CRISPR genome-editing data analysis. Int. J. Biol. Sci. 14, 858–862 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, W. et al. DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Mol. Plant 8, 1431–1433 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Nishimura, A., Aichi, I. & Matsuoka, M. A protocol for Agrobacterium-mediated transformation in rice. Nat. Protoc. 1, 2796–2802 (2007).

    Article  Google Scholar 

  80. Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Morgante, M. & Salamini, F. From plant genomics to breeding practice. Curr. Opin. Biotechnol. 14, 214–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Xie, K., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl Acad. Sci. USA 112, 3570–3575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Holsters, M. et al. Transfection and transformation of Agrobacterium tumefaciens. Mol. Genet. Genomics 163, 181–187 (1978).

    Article  CAS  Google Scholar 

  84. Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S. & Thompson, W. F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320–2325 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, Y., Wan, X. & Wang, B. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. Nat. Commun. 10, 3693 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fontana, J., Sparkman-Yager, D., Zalatan, J. G. & Carothers, J. M. Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering. Curr. Opin. Biotechnol. 64, 190–198 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Ren, X. et al. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep. 9, 1151–1162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Tycko, J., Myer, V. E. & Hsu, P. D. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol. Cell 63, 355–370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, G., Yin, K., Zhang, Q., Gao, C. & Qiu, J. L. Modulating chromatin accessibility by transactivation and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo. Genome Biol. 20, 145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Verkuijl, S. A. & Rots, M. G. The influence of eukaryotic chromatin state on CRISPR–Cas9 editing efficiencies. Curr. Opin. Biotechnol. 55, 68–73 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Weiss, T. et al. Epigenetic features drastically impact CRISPR–Cas9 efficacy in plants. Plant Physiol. 190, 1153–1164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Horlbeck, M. A. et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife 5, e12677 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hassan, M. M. et al. Construct design for CRISPR/Cas-based genome editing in plants. Trends Plant Sci. 26, 1133–1152 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Ma, X., Zhu, Q., Chen, Y. & Liu, Y. G. CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol. Plant 9, 961–974 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Plant Genome Research Program grants (award nos. IOS-1758745 and IOS-2029889), a USDA-NIFA Biotechnology Risk Assessment grant (award no. 2020-33522-32274), the USDA-AFRI Agricultural Innovations Through Gene Editing Program (award no. 2021-67013-34554), National Natural Science Foundation of China (31972417) and the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (SN-ZJU-SIAS-0011).

Author information

Authors and Affiliations

Authors

Contributions

C.P. wrote the manuscript. Y.Q. and C.P. revised the manuscript.

Corresponding authors

Correspondence to Changtian Pan or Yiping Qi.

Ethics declarations

Competing interests

Y.Q. and C.P. are inventors on a US patent application that has been filed on the CRISPR-Combo system in this protocol. Y.Q. is a consultant for Inari Agriculture.

Peer review

Peer review information

Nature Protocols thanks Caixia Gao, Diego Orzaez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Pan, C. et al. Nat. Plants 7, 942–953 (2021): https://doi.org/10.1038/s41477-021-00953-7

Pan, C. et al. Nat. Plants 8, 513–525 (2022): https://doi.org/10.1038/s41477-022-01151-9

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Qi, Y. CRISPR-Combo–mediated orthogonal genome editing and transcriptional activation for plant breeding. Nat Protoc 18, 1760–1794 (2023). https://doi.org/10.1038/s41596-023-00823-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00823-w

  • Springer Nature Limited

This article is cited by

Navigation