Skip to main content

Advertisement

Log in

Cartilage calcification in osteoarthritis: mechanisms and clinical relevance

  • Review Article
  • Published:

From Nature Reviews Rheumatology

View current issue Sign up to alerts

Abstract

Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.

Key points

  • Cartilage calcification, consisting of basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is a hallmark of osteoarthritis (OA).

  • The extent of BCP calcification correlates with the histological severity of OA.

  • Calcium crystals are formed by chondrocytes undergoing hypertrophy, mitophagy or apoptosis in response to inflammation and ageing.

  • Crystals trigger responses in chondrocytes, fibroblasts and macrophages, leading to inflammation, cell death and cartilage catabolism.

  • Treatments that inhibit pathological calcification could be potential novel therapies for OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Mechanisms of crystal nucleation.
Fig. 2: Modulators of crystal nucleation and growth.
Fig. 3: Molecular pathways activated by BCP and CPP crystals in chondrocytes.
Fig. 4: Molecular pathways activated by BCP and CPP crystals on synovial fibroblasts.
Fig. 5: Contribution of calcium-containing crystals in OA pathogenesis and potential therapies.

Similar content being viewed by others

References

  1. Molloy, E. S. & McCarthy, G. M. Hydroxyapatite deposition disease of the joint. Curr. Rheumatol. Rep. 5, 215–221 (2003).

    Article  Google Scholar 

  2. Yavorskyy, A., Hernandez-Santana, A., McCarthy, G. & McMahon, G. Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis — analytical approaches and challenges. Analyst 133, 302–318 (2008).

    Article  CAS  Google Scholar 

  3. Dieppe, P. A., Crocker, P., Huskisson, E. C. & Willoughby, D. A. Apatite deposition disease. A new arthropathy. Lancet 1, 266–269 (1976).

    Article  CAS  Google Scholar 

  4. Schumacher, H. R. Crystal-induced arthritis: an overview. Am. J. Med. 100, 46S–52S (1996).

    Article  CAS  Google Scholar 

  5. Halverson, P. B. Arthropathies associated with basic calcium phosphate crystals. Scanning Microsc. 6, 791–796 (1992). discussion 796-797.

    CAS  Google Scholar 

  6. Rosenthal, A. K. Basic calcium phosphate crystal-associated musculoskeletal syndromes: an update. Curr. Opin. Rheumatol. 30, 168–172 (2018).

    Article  CAS  Google Scholar 

  7. Liu, Y. Z., Jackson, A. P. & Cosgrove, S. D. Contribution of calcium-containing crystals to cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage 17, 1333–1340 (2009).

    Article  CAS  Google Scholar 

  8. Zhang, W. et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis. Ann. Rheum. Dis. 70, 563–570 (2011).

    Article  CAS  Google Scholar 

  9. McCarty, D. J., Kohn, N. N. & Faires, J. S. The significance of calcium phosphate crystals in the synovial fluid of arthritic patients: the “Pseudogout Syndrome”. Ann. Intern. Med. 56, 711–737 (1962).

    Article  CAS  Google Scholar 

  10. Nalbant, S. et al. Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthritis Cartilage 11, 50–54 (2003).

    Article  CAS  Google Scholar 

  11. Gibilisco, P. A., Schumacher, H. R. Jr, Hollander, J. L. & Soper, K. A. Synovial fluid crystals in osteoarthritis. Arthritis Rheum. 28, 511–515 (1985).

    Article  CAS  Google Scholar 

  12. Ledingham, J., Regan, M., Jones, A. & Doherty, M. Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann. Rheum. Dis. 52, 520–526 (1993).

    Article  CAS  Google Scholar 

  13. Pattrick, M., Hamilton, E., Wilson, R., Austin, S. & Doherty, M. Association of radiographic changes of osteoarthritis, symptoms, and synovial fluid particles in 300 knees. Ann. Rheum. Dis. 52, 97–103 (1993).

    Article  CAS  Google Scholar 

  14. Derfus, B. A. et al. The high prevalence of pathologic calcium crystals in pre-operative knees. J. Rheumatol. 29, 570–574 (2002).

    Google Scholar 

  15. Halverson, P. B. & McCarty, D. J. Patterns of radiographic abnormalities associated with basic calcium phosphate and calcium pyrophosphate dihydrate crystal deposition in the knee. Ann. Rheum. Dis. 45, 603–605 (1986).

    Article  CAS  Google Scholar 

  16. Neame, R. L., Carr, A. J., Muir, K. & Doherty, M. UK community prevalence of knee chondrocalcinosis: evidence that correlation with osteoarthritis is through a shared association with osteophyte. Ann. Rheum. Dis. 62, 513–518 (2003).

    Article  CAS  Google Scholar 

  17. Felson, D. T. et al. Risk factors for incident radiographic knee osteoarthritis in the elderly: the Framingham Study. Arthritis Rheum. 40, 728–733 (1997).

    Article  CAS  Google Scholar 

  18. Fuerst, M. et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 60, 2694–2703 (2009).

    Article  CAS  Google Scholar 

  19. Fuerst, M. et al. Articular cartilage mineralization in osteoarthritis of the hip. BMC Musculoskelet. Disord. 10, 166 (2009).

    Article  Google Scholar 

  20. Hawellek, T. et al. Articular cartilage calcification of the hip and knee is highly prevalent, independent of age but associated with histological osteoarthritis: evidence for a systemic disorder. Osteoarthritis Cartilage 24, 2092–2099 (2016).

    Article  CAS  Google Scholar 

  21. Hubert, J. et al. Cartilage calcification of the ankle joint is associated with osteoarthritis in the general population. BMC Musculoskelet. Disord. 19, 169 (2018).

    Article  Google Scholar 

  22. Hawellek, T. et al. Articular cartilage calcification of the humeral head is highly prevalent and associated with osteoarthritis in the general population. J. Orthop. Res. 34, 1984–1990 (2016).

    Article  CAS  Google Scholar 

  23. Hubert, J. et al. Hyaline cartilage calcification of the first metatarsophalangeal joint is associated with osteoarthritis but independent of age and BMI. BMC Musculoskelet. Disord. 17, 474 (2016).

    Article  Google Scholar 

  24. Hawellek, T. et al. Calcification of the acetabular labrum of the hip: prevalence in the general population and relation to hip articular cartilage and fibrocartilage degeneration. Arthritis Res. Ther. 20, 104 (2018).

    Article  Google Scholar 

  25. Frallonardo, P. et al. Basic calcium phosphate and pyrophosphate crystals in early and late osteoarthritis: relationship with clinical indices and inflammation. Clin. Rheumatol. 37, 2847–2853 (2018).

    Article  Google Scholar 

  26. Latourte, A. et al. Chondrocalcinosis of the knee and the risk of osteoarthritis progression: data from the knee and hip osteoarthritis long-term assessment cohort. Arthritis Rheumatol. 72, 726–732 (2020).

    Article  Google Scholar 

  27. Neogi, T. et al. Lack of association between chondrocalcinosis and increased risk of cartilage loss in knees with osteoarthritis: results of two prospective longitudinal magnetic resonance imaging studies. Arthritis Rheum. 54, 1822–1828 (2006).

    Article  CAS  Google Scholar 

  28. Filippou, G. et al. Criterion validity of ultrasound in the identification of calcium pyrophosphate crystal deposits at the knee: an OMERACT ultrasound study. Ann. Rheum. Dis. 80, 261–267 (2021).

    Article  CAS  Google Scholar 

  29. Guermazi, A. et al. Reliability of a new scoring system for intraarticular mineralization of the knee: Boston University Calcium Knee Score (BUCKS). Osteoarthritis Cartilage 28, 802–810 (2020).

    Article  CAS  Google Scholar 

  30. Bernabei, I. et al. Multi-energy photon-counting computed tomography versus other clinical imaging techniques for the identification of articular calcium crystal deposition. Rheumatology 60, 2483–2485 (2021).

    Article  Google Scholar 

  31. Stamp, L. K. et al. Clinical utility of multi-energy spectral photon-counting computed tomography in crystal arthritis. Arthritis Rheumatol. 71, 1158–1162 (2019).

    Article  CAS  Google Scholar 

  32. Reynard, L. N. & Barter, M. J. Osteoarthritis year in review 2019: genetics, genomics and epigenetics. Osteoarthritis Cartilage 28, 275–284 (2020).

    Article  CAS  Google Scholar 

  33. Komori, T. Whole aspect of Runx2 functions in skeletal development. Int. J. Mol. Sci. 23, 5776 (2022).

    Article  CAS  Google Scholar 

  34. Dreier, R. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res. Ther. 12, 216 (2010).

    Article  Google Scholar 

  35. van der Kraan, P. M. & van den Berg, W. B. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage 20, 223–232 (2012).

    Article  Google Scholar 

  36. Ea, H. K. et al. Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum. 63, 10–18 (2011).

    Article  CAS  Google Scholar 

  37. Hessle, L. et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl Acad. Sci. USA 99, 9445–9449 (2002).

    Article  CAS  Google Scholar 

  38. Zhou, X., Cui, Y., Zhou, X. & Han, J. Phosphate/pyrophosphate and MV-related proteins in mineralisation: discoveries from mouse models. Int. J. Biol. Sci. 8, 778–790 (2012).

    Article  CAS  Google Scholar 

  39. Cruz, M. A. E. et al. Phosphatidylserine controls calcium phosphate nucleation and growth on lipid monolayers: a physicochemical understanding of matrix vesicle-driven biomineralization. J. Struct. Biol. 212, 107607 (2020).

    Article  CAS  Google Scholar 

  40. Cavaco, S. et al. Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell Mol. Life Sci. 73, 1051–1065 (2016).

    Article  CAS  Google Scholar 

  41. Nasi, S., So, A., Combes, C., Daudon, M. & Busso, N. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann. Rheum. Dis. 75, 1372–1379 (2016).

    Article  CAS  Google Scholar 

  42. Long, D. L., Willey, J. S. & Loeser, R. F. Rac1 is required for matrix metalloproteinase 13 production by chondrocytes in response to fibronectin fragments. Arthritis Rheum. 65, 1561–1568 (2013).

    Article  CAS  Google Scholar 

  43. Queirolo, V. et al. PKCε is a regulator of hypertrophic differentiation of chondrocytes in osteoarthritis. Osteoarthritis Cartilage 24, 1451–1460 (2016).

    Article  CAS  Google Scholar 

  44. Pei, D. D. et al. Contribution of mitophagy to cell-mediated mineralization: revisiting a 50-year-old conundrum. Adv. Sci. 5, 1800873 (2018).

    Article  Google Scholar 

  45. Ansari, M. Y., Khan, N. M., Ahmad, I. & Haqqi, T. M. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes. Osteoarthritis Cartilage 26, 1087–1097 (2018).

    Article  CAS  Google Scholar 

  46. Wang, C. et al. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. Biosci. Trends 12, 605–612 (2019).

    Article  Google Scholar 

  47. Huang, L. W. et al. Zinc protects chondrocytes from monosodium iodoacetate-induced damage by enhancing ATP and mitophagy. Biochem. Biophys. Res. Commun. 521, 50–56 (2020).

    Article  CAS  Google Scholar 

  48. Shin, H. J. et al. Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis. J. Clin. Med. 8, 1849 (2019).

    Article  CAS  Google Scholar 

  49. Boraldi, F., Lofaro, F. D. & Quaglino, D. Apoptosis in the extraosseous calcification process. Cells 10, 131 (2021).

    Article  CAS  Google Scholar 

  50. D’Arcy, M. S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 43, 582–592 (2019).

    Article  Google Scholar 

  51. Hashimoto, S. et al. Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc. Natl Acad. Sci. USA 95, 3094–3099 (1998).

    Article  CAS  Google Scholar 

  52. Bratton, D. L. et al. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272, 26159–26165 (1997).

    Article  CAS  Google Scholar 

  53. Musumeci, G., Loreto, C., Carnazza, M. L. & Martinez, G. Characterization of apoptosis in articular cartilage derived from the knee joints of patients with osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 19, 307–313 (2011).

    Article  Google Scholar 

  54. Zamli, Z. & Sharif, M. Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int. J. Rheum. Dis. 14, 159–166 (2011).

    Article  Google Scholar 

  55. Blanco, F. J., Guitian, R., Vazquez-Martul, E., de Toro, F. J. & Galdo, F. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum. 41, 284–289 (1998).

    Article  CAS  Google Scholar 

  56. Sharif, M., Whitehouse, A., Sharman, P., Perry, M. & Adams, M. Increased apoptosis in human osteoarthritic cartilage corresponds to reduced cell density and expression of caspase-3. Arthritis Rheum. 50, 507–515 (2004).

    Article  CAS  Google Scholar 

  57. Thomas, C. M., Fuller, C. J., Whittles, C. E. & Sharif, M. Chondrocyte death by apoptosis is associated with the initiation and severity of articular cartilage degradation. Int. J. Rheum. Dis. 14, 191–198 (2011).

    Article  Google Scholar 

  58. Kouri, J. B., Aguilera, J. M., Reyes, J., Lozoya, K. A. & Gonzalez, S. Apoptotic chondrocytes from osteoarthrotic human articular cartilage and abnormal calcification of subchondral bone. J. Rheumatol. 27, 1005–1019 (2000).

    CAS  Google Scholar 

  59. Kirsch, T., Swoboda, B. & Nah, H. Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthritis Cartilage 8, 294–302 (2000).

    Article  CAS  Google Scholar 

  60. Magne, D. et al. Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification. J. Bone Min. Res. 18, 1430–1442 (2003).

    Article  CAS  Google Scholar 

  61. Abdelhafez, E. M. N., Ali, S. M. N. A., Hassan, M. R. E., Abdel-Hakem, A. M. Apoptotic Inhibitors as Therapeutic Targets for Cell Survival. In Cytotoxicity — Definition, Identification, and Cytotoxic Compounds (eds Istifli, E. S., Ila, H. B.) (IntechOpen, 2019).

  62. Landis, W. J. & Jacquet, R. Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif. Tissue Int. 93, 329–337 (2013).

    Article  CAS  Google Scholar 

  63. Nudelman, F. et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 9, 1004–1009 (2010).

    Article  CAS  Google Scholar 

  64. Wang, Y. et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat. Mater. 11, 724–733 (2012).

    Article  CAS  Google Scholar 

  65. Schwarcz, H. P., McNally, E. A. & Botton, G. A. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals. J. Struct. Biol. 188, 240–248 (2014).

    Article  CAS  Google Scholar 

  66. Yu, L. & Wei, M. Biomineralization of collagen-based materials for hard tissue repair. Int. J. Mol. Sci. 22, 944 (2021).

    Article  CAS  Google Scholar 

  67. Lotsari, A., Rajasekharan, A. K., Halvarsson, M. & Andersson, M. Transformation of amorphous calcium phosphate to bone-like apatite. Nat. Commun. 9, 4170 (2018).

    Article  Google Scholar 

  68. Vidavsky, N., Kunitake, J. & Estroff, L. A. Multiple pathways for pathological calcification in the human body. Adv. Healthc. Mater. 10, e2001271 (2021).

    Article  Google Scholar 

  69. Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21, 16–21 (2013).

    Article  CAS  Google Scholar 

  70. Chow, Y. Y. & Chin, K. Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020, 8293921 (2020).

    Article  Google Scholar 

  71. van den Bosch, M. H. J. Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease? Clin. Exp. Immunol. 195, 153–166 (2019).

    Article  Google Scholar 

  72. Cecil, D. L. et al. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J. Immunol. 175, 8296–8302 (2005).

    Article  CAS  Google Scholar 

  73. Johnson, K., Hashimoto, S., Lotz, M., Pritzker, K. & Terkeltaub, R. Interleukin-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and factor XIIIa. Am. J. Pathol. 159, 149–163 (2001).

    Article  CAS  Google Scholar 

  74. Merz, D., Liu, R., Johnson, K. & Terkeltaub, R. IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. J. Immunol. 171, 4406–4415 (2003).

    Article  CAS  Google Scholar 

  75. Morita, K. et al. Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J. Exp. Med. 204, 1613–1623 (2007).

    Article  CAS  Google Scholar 

  76. Nasi, S. et al. The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway against experimental osteoarthritis. Arthritis Res. Ther. 22, 49 (2020).

    Article  CAS  Google Scholar 

  77. Nasi, S. et al. Xanthine oxidoreductase is involved in chondrocyte mineralization and expressed in osteoarthritic damaged cartilage. Front. Cell Dev. Biol. 9, 612440 (2021).

    Article  Google Scholar 

  78. Amin, A. R. et al. The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase. J. Exp. Med. 182, 2097–2102 (1995).

    Article  CAS  Google Scholar 

  79. Palmer, R. M., Hickery, M. S., Charles, I. G., Moncada, S. & Bayliss, M. T. Induction of nitric oxide synthase in human chondrocytes. Biochem. Biophys. Res. Commun. 193, 398–405 (1993).

    Article  CAS  Google Scholar 

  80. van den Berg, W. B., van de Loo, F., Joosten, L. A. & Arntz, O. J. Animal models of arthritis in NOS2-deficient mice. Osteoarthritis Cartilage 7, 413–415 (1999).

    Article  Google Scholar 

  81. Cheung, H. S. & Ryan, L. M. Phosphocitrate blocks nitric oxide-induced calcification of cartilage and chondrocyte-derived apoptotic bodies. Osteoarthritis Cartilage 7, 409–412 (1999).

    Article  CAS  Google Scholar 

  82. Whiteman, M. et al. Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J. 18, 1395–1397 (2004).

    Article  CAS  Google Scholar 

  83. Anderson, H. C., Hodges, P. T., Aguilera, X. M., Missana, L. & Moylan, P. E. Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage. J. Histochem. Cytochem. 48, 1493–1502 (2000).

    Article  CAS  Google Scholar 

  84. Steinert, A. F. et al. Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer. Arthritis Res. Ther. 11, R148 (2009).

    Article  Google Scholar 

  85. Valcourt, U., Gouttenoire, J., Moustakas, A., Herbage, D. & Mallein-Gerin, F. Functions of transforming growth factor-β family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J. Biol. Chem. 277, 33545–33558 (2002).

    Article  CAS  Google Scholar 

  86. Shao, Y. et al. BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as osteoarthritis progression in mice. Aging 13, 9646–9664 (2021).

    Article  CAS  Google Scholar 

  87. Cai, M. M., Smith, E. R. & Holt, S. G. The role of fetuin-A in mineral trafficking and deposition. Bonekey Rep. 4, 672 (2015).

    Article  CAS  Google Scholar 

  88. Pappa, E., Perrea, D. S., Pneumaticos, S. & Nikolaou, V. S. Role of fetuin A in the diagnosis and treatment of joint arthritis. World J. Orthop. 8, 461–464 (2017).

    Article  Google Scholar 

  89. Xiao, J. et al. Serum fetuin-A levels are inversely associated with clinical severity in patients with primary knee osteoarthritis. Biomarkers 18, 51–54 (2013).

    Article  CAS  Google Scholar 

  90. Jahnen-Dechent, W., Heiss, A., Schafer, C. & Ketteler, M. Fetuin-A regulation of calcified matrix metabolism. Circ. Res. 108, 1494–1509 (2011).

    Article  CAS  Google Scholar 

  91. Pappa, E. et al. The role of intra-articular administration of Fetuin-A in post-traumatic knee osteoarthritis: an experimental study in a rat model. J. Exp. Orthop. 6, 25 (2019).

    Article  Google Scholar 

  92. Favero, M. et al. Synovial fluid fetuin-A levels in patients affected by osteoarthritis with or without evidence of calcium crystals. Rheumatology 58, 729–730 (2019).

    Article  CAS  Google Scholar 

  93. Pesesse, L. et al. Bone sialoprotein as a potential key factor implicated in the pathophysiology of osteoarthritis. Osteoarthritis Cartilage 22, 547–556 (2014).

    Article  CAS  Google Scholar 

  94. Hunter, G. K. & Goldberg, H. A. Nucleation of hydroxyapatite by bone sialoprotein. Proc. Natl Acad. Sci. USA 90, 8562–8565 (1993).

    Article  CAS  Google Scholar 

  95. Baht, G. S., Hunter, G. K. & Goldberg, H. A. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation. Matrix Biol. 27, 600–608 (2008).

    Article  CAS  Google Scholar 

  96. Tye, C. E. et al. Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J. Biol. Chem. 278, 7949–7955 (2003).

    Article  CAS  Google Scholar 

  97. Monfoulet, L. et al. Bone sialoprotein, but not osteopontin, deficiency impairs the mineralization of regenerating bone during cortical defect healing. Bone 46, 447–452 (2010).

    Article  CAS  Google Scholar 

  98. Gorski, J. P. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins. Front. Biosci. 16, 2598–2621 (2011).

    Article  CAS  Google Scholar 

  99. Baht, G. S. et al. Phosphorylation of Ser136 is critical for potent bone sialoprotein-mediated nucleation of hydroxyapatite crystals. Biochem. J. 428, 385–395 (2010).

    Article  CAS  Google Scholar 

  100. Idelevich, A., Rais, Y. & Monsonego-Ornan, E. Bone Gla protein increases HIF-1α-dependent glucose metabolism and induces cartilage and vascular calcification. Arterioscler. Thromb. Vasc. Biol. 31, e55–e71 (2011).

    Article  CAS  Google Scholar 

  101. Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).

    Article  CAS  Google Scholar 

  102. Moriishi, T. et al. Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet. 16, e1008586 (2020).

    Article  CAS  Google Scholar 

  103. Pullig, O., Weseloh, G., Ronneberger, D., Kakonen, S. & Swoboda, B. Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif. Tissue Int. 67, 230–240 (2000).

    Article  CAS  Google Scholar 

  104. Zhang, Q. et al. Dmp1 null mice develop a unique osteoarthritis-like phenotype. Int. J. Biol. Sci. 12, 1203–1212 (2016).

    Article  CAS  Google Scholar 

  105. Prasadam, I., Zhou, Y., Shi, W., Crawford, R. & Xiao, Y. Role of dentin matrix protein 1 in cartilage redifferentiation and osteoarthritis. Rheumatology 53, 2280–2287 (2014).

    Article  CAS  Google Scholar 

  106. He, G., Dahl, T., Veis, A. & George, A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat. Mater. 2, 552–558 (2003).

    Article  CAS  Google Scholar 

  107. Ye, L. et al. Dmp1-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J. Biol. Chem. 280, 6197–6203 (2005).

    Article  CAS  Google Scholar 

  108. Rosenthal, A. K., Gohr, C. M., Uzuki, M. & Masuda, I. Osteopontin promotes pathologic mineralization in articular cartilage. Matrix Biol. 26, 96–105 (2007).

    Article  CAS  Google Scholar 

  109. Rosenthal, A. K., Derfus, B. A. & Henry, L. A. Transglutaminase activity in aging articular chondrocytes and articular cartilage vesicles. Arthritis Rheum. 40, 966–970 (1997).

    Article  CAS  Google Scholar 

  110. Gao, S. G. et al. Elevated osteopontin level of synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis patients. Osteoarthritis Cartilage 18, 82–87 (2010).

    Article  CAS  Google Scholar 

  111. Luo, G. et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997).

    Article  CAS  Google Scholar 

  112. O’Young, J. et al. Matrix Gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals. J. Am. Chem. Soc. 133, 18406–18412 (2011).

    Article  Google Scholar 

  113. den Hollander, W. et al. Genome-wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand. Ann. Rheum. Dis. 76, 2046–2053 (2017).

    Article  CAS  Google Scholar 

  114. Hur, D. J. et al. A novel MGP mutation in a consanguineous family: review of the clinical and molecular characteristics of Keutel syndrome. Am. J. Med. Genet. A 135, 36–40 (2005).

    Article  Google Scholar 

  115. Rafael, M. S. et al. Insights into the association of Gla-rich protein and osteoarthritis, novel splice variants and gamma-carboxylation status. Mol. Nutr. Food Res. 58, 1636–1646 (2014).

    Article  CAS  Google Scholar 

  116. Cancela, M. L., Conceicao, N. & Laize, V. Gla-rich protein, a new player in tissue calcification? Adv. Nutr. 3, 174–181 (2012).

    Article  CAS  Google Scholar 

  117. O’Conor, C. J. et al. Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci. Rep. 6, 29053 (2016).

    Article  Google Scholar 

  118. Burton, D. W. et al. Chondrocyte calcium-sensing receptor expression is up-regulated in early guinea pig knee osteoarthritis and modulates PTHrP, MMP-13, and TIMP-3 expression. Osteoarthritis Cartilage 13, 395–404 (2005).

    Article  CAS  Google Scholar 

  119. Zhang, M. et al. Prevention of injury-induced osteoarthritis in rodent temporomandibular joint by targeting chondrocyte CaSR. J. Bone Min. Res. 34, 726–738 (2019).

    Article  CAS  Google Scholar 

  120. Chang, W., Tu, C., Chen, T. H., Bikle, D. & Shoback, D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci. Signal. 1, ra1 (2008).

    Article  Google Scholar 

  121. Pritchard, M. H. & Jessop, J. D. Chondrocalcinosis in primary hyperparathyroidism. Influence of age, metabolic bone disease, and parathyroidectomy. Ann. Rheum. Dis. 36, 146–151 (1977).

    Article  CAS  Google Scholar 

  122. Dodds, W. J. & Steinbach, H. L. Primary hyperparathyroidism and articular cartilage calcification. Am. J. Roentgenol. Radium Ther. Nucl. Med. 104, 884–892 (1968).

    Article  CAS  Google Scholar 

  123. Priesand, S., Wyckoff, J., Wrobel, J. & Schmidt, B. Acute pseudogout of the foot following parathyroidectomy: a case report. Clin. Diabetes Endocrinol. 3, 10 (2017).

    Article  Google Scholar 

  124. Johnson, K. et al. Up-regulated expression of the phosphodiesterase nucleotide pyrophosphatase family member PC-1 is a marker and pathogenic factor for knee meniscal cartilage matrix calcification. Arthritis Rheum. 44, 1071–1081 (2001).

    Article  CAS  Google Scholar 

  125. Pendleton, A. et al. Mutations in ANKH cause chondrocalcinosis. Am. J. Hum. Genet. 71, 933–940 (2002).

    Article  Google Scholar 

  126. Zhang, Y. et al. Association of sporadic chondrocalcinosis with a −4-basepair G-to-A transition in the 5’-untranslated region of ANKH that promotes enhanced expression of ANKH protein and excess generation of extracellular inorganic pyrophosphate. Arthritis Rheum. 52, 1110–1117 (2005).

    Article  CAS  Google Scholar 

  127. Zaka, R. & Williams, C. J. Genetics of chondrocalcinosis. Osteoarthritis Cartilage 13, 745–750 (2005).

    Article  Google Scholar 

  128. Abhishek, A. & Doherty, M. Pathophysiology of articular chondrocalcinosis — role of ANKH. Nat. Rev. Rheumatol. 7, 96–104 (2011).

    Article  CAS  Google Scholar 

  129. Uzuki, M., Sawai, T., Ryan, L. M., Rosenthal, A. K. & Masuda, I. Upregulation of ANK protein expression in joint tissue in calcium pyrophosphate dihydrate crystal deposition disease. J. Rheumatol. 41, 65–74 (2014).

    Article  CAS  Google Scholar 

  130. Fleisch, H., Russell, R. G. & Straumann, F. Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212, 901–903 (1966).

    Article  CAS  Google Scholar 

  131. Bertrand, J. et al. Decreased levels of nucleotide pyrophosphatase phosphodiesterase 1 are associated with cartilage calcification in osteoarthritis and trigger osteoarthritic changes in mice. Ann. Rheum. Dis. 71, 1249–1253 (2012).

    Article  CAS  Google Scholar 

  132. Terkeltaub, R. Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification. Purinergic Signal. 2, 371–377 (2006).

    Article  CAS  Google Scholar 

  133. Ho, A. M., Johnson, M. D. & Kingsley, D. M. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289, 265–270 (2000).

    Article  CAS  Google Scholar 

  134. Zaka, R. & Williams, C. J. Role of the progressive ankylosis gene in cartilage mineralization. Curr. Opin. Rheumatol. 18, 181–186 (2006).

    Article  CAS  Google Scholar 

  135. Johnson, K. & Terkeltaub, R. Inorganic pyrophosphate (PPI) in pathologic calcification of articular cartilage. Front. Biosci. 10, 988–997 (2005).

    Article  CAS  Google Scholar 

  136. Narisawa, S., Frohlander, N. & Millan, J. L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn. 208, 432–446 (1997).

    Article  CAS  Google Scholar 

  137. Chotard, E. et al. Calcium pyrophosphate crystal deposition in a cohort of 57 patients with Gitelman Syndrome. Rheumatology 61, 2494–2503 (2021).

    Article  Google Scholar 

  138. Richette, P. et al. Hypomagnesemia associated with chondrocalcinosis: a cross-sectional study. Arthritis Rheum. 57, 1496–1501 (2007).

    Article  Google Scholar 

  139. Caswell, A., Guilland-Cumming, D. F., Hearn, P. R., McGuire, M. K. & Russell, R. G. Pathogenesis of chondrocalcinosis and pseudogout. Metabolism of inorganic pyrophosphate and production of calcium pyrophosphate dihydrate crystals. Ann. Rheum. Dis. 42 (Suppl. 1), 27–37 (1983).

    Article  CAS  Google Scholar 

  140. Renaudin, F. et al. Adsorption of proteins on m-CPPD and urate crystals inhibits crystal-induced cell responses: study on albumin-crystal interaction. J. Funct. Biomater. 10, 18 (2019).

    Article  CAS  Google Scholar 

  141. Platt, P. & Dick, W. C. Crystals and inflammation. Ann. Rheum. Dis. 42 (Suppl. 1), 4–7 (1983).

    Article  CAS  Google Scholar 

  142. Sun, Y., Zeng, X. R., Wenger, L. & Cheung, H. S. Basic calcium phosphate crystals stimulate the endocytotic activity of cells — inhibition by anti-calcification agents. Biochem. Biophys. Res. Commun. 312, 1053–1059 (2003).

    Article  CAS  Google Scholar 

  143. Barabe, F., Gilbert, C., Liao, N., Bourgoin, S. G. & Naccache, P. H. Crystal-induced neutrophil activation VI. Involvement of FcγRIIIB (CD16) and CD11b in response to inflammatory microcrystals. FASEB J. 12, 209–220 (1998).

    Article  CAS  Google Scholar 

  144. Liu-Bryan, R., Pritzker, K., Firestein, G. S. & Terkeltaub, R. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J. Immunol. 174, 5016–5023 (2005).

    Article  CAS  Google Scholar 

  145. Liu-Bryan, R. & Liote, F. Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals, inflammation, and cellular signaling. Jt. Bone Spine 72, 295–302 (2005).

    Article  Google Scholar 

  146. Nadra, I. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ. Res. 96, 1248–1256 (2005).

    Article  CAS  Google Scholar 

  147. McCarthy, G. M., Cheung, H. S., Abel, S. M. & Ryan, L. M. Basic calcium phosphate crystal-induced collagenase production: role of intracellular crystal dissolution. Osteoarthritis Cartilage 6, 205–213 (1998).

    Article  CAS  Google Scholar 

  148. Halverson, P. B., Greene, A. & Cheung, H. S. Intracellular calcium responses to basic calcium phosphate crystals in fibroblasts. Osteoarthritis Cartilage 6, 324–329 (1998).

    Article  CAS  Google Scholar 

  149. Burt, H. M. & Jackson, J. K. Enhancement of crystal induced neutrophil responses by opsonisation of calcium pyrophosphate dihydrate crystals. Ann. Rheum. Dis. 52, 599–607 (1993).

    Article  CAS  Google Scholar 

  150. Winternitz, C. I., Jackson, J. K. & Burt, H. M. The interaction of monoclinic calcium pyrophosphate dihydrate crystals with neutrophils. Rheumatol. Int. 16, 101–107 (1996).

    Article  CAS  Google Scholar 

  151. Bertrand, J. et al. BCP crystals promote chondrocyte hypertrophic differentiation in OA cartilage by sequestering Wnt3a. Ann. Rheum. Dis. 79, 975–984 (2020).

    Article  CAS  Google Scholar 

  152. Hang, H. C. & Linder, M. E. Exploring protein lipidation with chemical biology. Chem. Rev. 111, 6341–6358 (2011).

    Article  CAS  Google Scholar 

  153. Ea, H. K. et al. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLoS One 8, e57352 (2013).

    Article  CAS  Google Scholar 

  154. Munshi, M. et al. SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas. Blood Cancer J. 10, 12 (2020).

    Article  Google Scholar 

  155. Chen, L. et al. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 23, 826–838 (2013).

    Article  CAS  Google Scholar 

  156. Cunningham, C. C. et al. Osteoarthritis-associated basic calcium phosphate crystals induce pro-inflammatory cytokines and damage-associated molecules via activation of Syk and PI3 kinase. Clin. Immunol. 144, 228–236 (2012).

    Article  CAS  Google Scholar 

  157. Luo, Y. & Zheng, S. G. Hall of Fame among Pro-inflammatory cytokines: interleukin-6 gene and its transcriptional regulation mechanisms. Front. Immunol. 7, 604 (2016).

    Article  Google Scholar 

  158. Ehirchiou, D. et al. CD11b signaling prevents chondrocyte mineralization and attenuates the severity of osteoarthritis. Front. Cell Dev. Biol. 8, 611757 (2020).

    Article  Google Scholar 

  159. Ea, H. K., Uzan, B., Rey, C. & Liote, F. Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogen-activated protein kinases in articular chondrocytes. Arthritis Res. Ther. 7, R915–R926 (2005).

    Article  CAS  Google Scholar 

  160. Molloy, E. S. & McCarthy, G. M. Basic calcium phosphate crystals: pathways to joint degeneration. Curr. Opin. Rheumatol. 18, 187–192 (2006).

    Article  CAS  Google Scholar 

  161. Rong, J. et al. Basic calcium phosphate crystals induce osteoarthritis-associated changes in phenotype markers in primary human chondrocytes by a calcium/calmodulin kinase 2-dependent mechanism. Calcif. Tissue Int. 104, 331–343 (2019).

    Article  CAS  Google Scholar 

  162. Nalesso, G. et al. WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J. Cell Biol. 193, 551–564 (2011).

    Article  CAS  Google Scholar 

  163. Stucker, S., Bollmann, M., Garbers, C. & Bertrand, J. The role of calcium crystals and their effect on osteoarthritis pathogenesis. Best. Pract. Res. Clin. Rheumatol. 35, 101722 (2021).

    Article  Google Scholar 

  164. Ea, H. K. et al. Annexin 5 overexpression increased articular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann. Rheum. Dis. 67, 1617–1625 (2008).

    Article  CAS  Google Scholar 

  165. Meyer, F. et al. Chondrocytes from osteoarthritic and chondrocalcinosis cartilage represent different phenotypes. Front. Cell Dev. Biol. 9, 622287 (2021).

    Article  Google Scholar 

  166. McCarthy, G. M. & Dunne, A. Calcium crystal deposition diseases - beyond gout. Nat. Rev. Rheumatol. 14, 592–602 (2018).

    Article  CAS  Google Scholar 

  167. McCarthy, G. M. et al. Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase-3) in adult porcine articular chondrocytes. Ann. Rheum. Dis. 60, 399–406 (2001).

    Article  CAS  Google Scholar 

  168. Nguyen, C. et al. Intracellular calcium oscillations in articular chondrocytes induced by basic calcium phosphate crystals lead to cartilage degradation. Osteoarthritis Cartilage 20, 1399–1408 (2012).

    Article  CAS  Google Scholar 

  169. Nalesso, G. et al. Calcium calmodulin kinase II activity is required for cartilage homeostasis in osteoarthritis. Sci. Rep. 11, 5682 (2021).

    Article  CAS  Google Scholar 

  170. Sugita, S. et al. Transcription factor Hes1 modulates osteoarthritis development in cooperation with calcium/calmodulin-dependent protein kinase 2. Proc. Natl Acad. Sci. USA 112, 3080–3085 (2015).

    Article  CAS  Google Scholar 

  171. Nishida, K. et al. Involvement of nitric oxide in chondrocyte cell death in chondro-osteophyte formation. Osteoarthritis Cartilage 9, 232–237 (2001).

    Article  CAS  Google Scholar 

  172. Wu, C. L., Harasymowicz, N. S., Klimak, M. A., Collins, K. H. & Guilak, F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage 28, 544–554 (2020).

    Article  Google Scholar 

  173. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  Google Scholar 

  174. Pazar, B. et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J. Immunol. 186, 2495–2502 (2011).

    Article  CAS  Google Scholar 

  175. Campillo-Gimenez, L. et al. Inflammatory potential of four different phases of calcium pyrophosphate relies on NF-κB activation and MAPK pathways. Front. Immunol. 9, 2248 (2018).

    Article  Google Scholar 

  176. Nasi, S., Ea, H. K., So, A. & Busso, N. Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1α and -1β, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front. Pharmacol. 8, 282 (2017).

    Article  Google Scholar 

  177. Mahon, O. R., Kelly, D. J., McCarthy, G. M. & Dunne, A. Osteoarthritis-associated basic calcium phosphate crystals alter immune cell metabolism and promote M1 macrophage polarization. Osteoarthritis Cartilage 28, 603–612 (2020).

    Article  CAS  Google Scholar 

  178. Schelbergen, R. F. et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 64, 1477–1487 (2012).

    Article  CAS  Google Scholar 

  179. Corr, E. M., Cunningham, C. C., Helbert, L., McCarthy, G. M. & Dunne, A. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res. Ther. 19, 23 (2017).

    Article  Google Scholar 

  180. Loftus, R. M. & Finlay, D. K. Immunometabolism: cellular metabolism turns immune regulator. J. Biol. Chem. 291, 1–10 (2016).

    Article  CAS  Google Scholar 

  181. Chen, Y. et al. Macrophages in osteoarthritis: pathophysiology and therapeutics. Am. J. Transl. Res. 12, 261–268 (2020).

    CAS  Google Scholar 

  182. Zhang, H., Cai, D. & Bai, X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage 28, 555–561 (2020).

    Article  CAS  Google Scholar 

  183. Liu, B., Zhang, M., Zhao, J., Zheng, M. & Yang, H. Imbalance of M1/M2 macrophages is linked to severity level of knee osteoarthritis. Exp. Ther. Med. 16, 5009–5014 (2018).

    CAS  Google Scholar 

  184. Gobelet, C. & Gerster, J. C. Synovial fluid lactate levels in septic and non-septic arthritides. Ann. Rheum. Dis. 43, 742–745 (1984).

    Article  CAS  Google Scholar 

  185. Bulysheva, A. A., Sori, N. & Francis, M. P. Direct crystal formation from micronized bone and lactic acid: the writing on the wall for calcium-containing crystal pathogenesis in osteoarthritis? PLoS One 13, e0202373 (2018).

    Article  Google Scholar 

  186. Fahy, N. et al. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthritis Cartilage22, 1167–1175 (2014).

    Article  CAS  Google Scholar 

  187. Mathiessen, A. & Conaghan, P. G. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res. Ther. 19, 18 (2017).

    Article  Google Scholar 

  188. Attur, M. et al. Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor. J. Immunol. 181, 5082–5088 (2008).

    Article  CAS  Google Scholar 

  189. Molloy, E. S. et al. Mechanism of basic calcium phosphate crystal-stimulated cyclo-oxygenase-1 up-regulation in osteoarthritic synovial fibroblasts. Rheumatology 47, 965–971 (2008).

    Article  CAS  Google Scholar 

  190. Morgan, M. P. et al. Basic calcium phosphate crystal-induced prostaglandin E2 production in human fibroblasts: role of cyclooxygenase 1, cyclooxygenase 2, and interleukin-1beta. Arthritis Rheum. 50, 1642–1649 (2004).

    Article  CAS  Google Scholar 

  191. McCarty, D. J. & Cheung, H. S. Prostaglandin (PG) E2 generation by cultured canine synovial fibroblasts exposed to microcrystals containing calcium. Ann. Rheum. Dis. 44, 316–320 (1985).

    Article  CAS  Google Scholar 

  192. McCarthy, G. M. et al. Molecular mechanism of basic calcium phosphate crystal-induced activation of human fibroblasts. Role of nuclear factor κb, activator protein 1, and protein kinase C. J. Biol. Chem. 273, 35161–35169 (1998).

    Article  CAS  Google Scholar 

  193. Zeng, X. R., Sun, Y., Wenger, L. & Cheung, H. S. Induction of early growth response gene Egr2 by basic calcium phosphate crystals through a calcium-dependent protein kinase C-independent p44/42 mitogen-activated protein kinase pathway. Cell Tissues Organs 174, 63–72 (2003).

    Article  CAS  Google Scholar 

  194. Zeng, X. R., Sun, Y., Wenger, L. & Cheung, H. S. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts. Biochem. Biophys. Res. Commun. 330, 658–664 (2005).

    Article  CAS  Google Scholar 

  195. Reuben, P. M., Brogley, M. A., Sun, Y. & Cheung, H. S. Molecular mechanism of the induction of metalloproteinases 1 and 3 in human fibroblasts by basic calcium phosphate crystals. Role of calcium-dependent protein kinase Cα. J. Biol. Chem. 277, 15190–15198 (2002).

    Article  CAS  Google Scholar 

  196. Brogley, M. A., Cruz, M. & Cheung, H. S. Basic calcium phosphate crystal induction of collagenase 1 and stromelysin expression is dependent on a p42/44 mitogen-activated protein kinase signal transduction pathway. J. Cell Physiol. 180, 215–224 (1999).

    Article  CAS  Google Scholar 

  197. Sun, Y., Wenger, L., Brinckerhoff, C. E., Misra, R. R. & Cheung, H. S. Basic calcium phosphate crystals induce matrix metalloproteinase-1 through the Ras/mitogen-activated protein kinase/c-Fos/AP-1/metalloproteinase 1 pathway. Involvement of transcription factor binding sites AP-1 and PEA-3. J. Biol. Chem. 277, 1544–1552 (2002).

    Article  CAS  Google Scholar 

  198. Bai, G., Howell, D. S., Howard, G. A., Roos, B. A. & Cheung, H. S. Basic calcium phosphate crystals up-regulate metalloproteinases but down-regulate tissue inhibitor of metalloproteinase-1 and -2 in human fibroblasts. Osteoarthritis Cartilage 9, 416–422 (2001).

    Article  CAS  Google Scholar 

  199. Reuben, P. M., Wenger, L., Cruz, M. & Cheung, H. S. Induction of matrix metalloproteinase-8 in human fibroblasts by basic calcium phosphate and calcium pyrophosphate dihydrate crystals: effect of phosphocitrate. Connect. Tissue Res. 42, 1–12 (2001).

    Article  CAS  Google Scholar 

  200. Nair, D., Misra, R. P., Sallis, J. D. & Cheung, H. S. Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J. Biol. Chem. 272, 18920–18925 (1997).

    Article  CAS  Google Scholar 

  201. Guerne, P. A., Terkeltaub, R., Zuraw, B. & Lotz, M. Inflammatory microcrystals stimulate interleukin-6 production and secretion by human monocytes and synoviocytes. Arthritis Rheum. 32, 1443–1452 (1989).

    Article  CAS  Google Scholar 

  202. Kuttapitiya, A. et al. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann. Rheum. Dis. 76, 1764–1773 (2017).

    Article  CAS  Google Scholar 

  203. Li, G. et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res. Ther. 15, 223 (2013).

    Article  CAS  Google Scholar 

  204. Shibakawa, A. et al. The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow. Osteoarthritis Cartilage 13, 679–687 (2005).

    Article  CAS  Google Scholar 

  205. Hunter, D. J. et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 54, 1529–1535 (2006).

    Article  Google Scholar 

  206. Knowles, H. J. et al. Chondroclasts are mature osteoclasts which are capable of cartilage matrix resorption. Virchows Arch. 461, 205–210 (2012).

    Article  CAS  Google Scholar 

  207. Chang, C. C., Tsai, Y. H., Liu, Y., Lin, S. Y. & Liang, Y. C. Calcium-containing crystals enhance receptor activator of nuclear factor κB ligand/macrophage colony-stimulating factor-mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways. Rheumatology 54, 1913–1922 (2015).

    Article  CAS  Google Scholar 

  208. Choi, Y., Yoo, J. H., Lee, Y., Bae, M. K. & Kim, H. J. Calcium-phosphate crystals promote RANKL expression via the downregulation of DUSP1. Mol. Cell 42, 183–188 (2019).

    CAS  Google Scholar 

  209. Bouchard, L., de Medicis, R., Lussier, A., Naccache, P. H. & Poubelle, P. E. Inflammatory microcrystals alter the functional phenotype of human osteoblast-like cells in vitro: synergism with IL-1 to overexpress cyclooxygenase-2. J. Immunol. 168, 5310–5317 (2002).

    Article  CAS  Google Scholar 

  210. Sai, Y. et al. Capacity of octacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro. Acta Biomater. 69, 362–371 (2018).

    Article  CAS  Google Scholar 

  211. Feng, X. RANKing intracellular signaling in osteoclasts. IUBMB Life 57, 389–395 (2005).

    Article  CAS  Google Scholar 

  212. Meo Burt, P., Xiao, L. & Hurley, M. M. FGF23 regulates Wnt/beta-catenin signaling-mediated osteoarthritis in mice overexpressing high-molecular-weight FGF2. Endocrinology 159, 2386–2396 (2018).

    Article  Google Scholar 

  213. Cheung, H. S., Devine, T. R. & Hubbard, W. Calcium phosphate particle induction of metalloproteinase and mitogenesis: effect of particle sizes. Osteoarthritis Cartilage 5, 145–151 (1997).

    Article  CAS  Google Scholar 

  214. Prudhommeaux, F. et al. Variation in the inflammatory properties of basic calcium phosphate crystals according to crystal type. Arthritis Rheum. 39, 1319–1326 (1996).

    Article  CAS  Google Scholar 

  215. Back, M. et al. Endogenous calcification inhibitors in the prevention of vascular calcification: a consensus statement from the COST action EuroSoftCalcNet. Front. Cardiovasc. Med. 5, 196 (2018).

    Article  Google Scholar 

  216. Kimura, H. Physiological roles of hydrogen sulfide and polysulfides. Handb. Exp. Pharmacol. 230, 61–81 (2015).

    Article  CAS  Google Scholar 

  217. Castelblanco, M., Nasi, S., Pasch, A., So, A. & Busso, N. The role of the gasotransmitter hydrogen sulfide in pathological calcification. Br. J. Pharmacol. 177, 778–792 (2020).

    Article  CAS  Google Scholar 

  218. Burguera, E. F. et al. Hydrogen sulfide biosynthesis is impaired in the osteoarthritic joint. Int. J. Biometeorol. 64, 997–1010 (2020).

    Article  Google Scholar 

  219. Nasi, S. et al. The gasotransmitter hydrogen sulfide (H2S) prevents pathologic calcification (PC) in cartilage. Antioxidants 10, 1433 (2021).

    Article  CAS  Google Scholar 

  220. Burguera, E. F., Vela-Anero, A., Magalhaes, J., Meijide-Failde, R. & Blanco, F. J. Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthritis Cartilage 22, 1026–1035 (2014).

    Article  CAS  Google Scholar 

  221. Vaamonde-Garcia, C. et al. Intraarticular administration effect of hydrogen sulfide on an in vivo rat model of osteoarthritis. Int. J. Mol. Sci. 21, 7421 (2020).

    Article  CAS  Google Scholar 

  222. Olson, K. R. The therapeutic potential of hydrogen sulfide: separating hype from hope. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R297–R312 (2011).

    Article  CAS  Google Scholar 

  223. Peng, T. et al. Systematic review of sodium thiosulfate in treating calciphylaxis in chronic kidney disease patients. Nephrology 23, 669–675 (2018).

    Article  CAS  Google Scholar 

  224. Nasi, S., Ea, H. K., Liote, F., So, A. & Busso, N. Sodium thiosulfate prevents chondrocyte mineralization and reduces the severity of murine osteoarthritis. PLoS One 11, e0158196 (2016).

    Article  Google Scholar 

  225. Jansen, R. S. et al. ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc. Natl Acad. Sci. USA 110, 20206–20211 (2013).

    Article  CAS  Google Scholar 

  226. Kauffenstein, G. et al. Disseminated arterial calcification and enhanced myogenic response are associated with abcc6 deficiency in a mouse model of pseudoxanthoma elasticum. Arterioscler. Thromb. Vasc. Biol. 34, 1045–1056 (2014).

    Article  CAS  Google Scholar 

  227. Mackenzie, N. C. et al. Altered bone development and an increase in FGF-23 expression in Enpp1−/− mice. PLoS One 7, e32177 (2012).

    Article  CAS  Google Scholar 

  228. Johnson, K. et al. Linked deficiencies in extracellular PPi and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J. Bone Min. Res. 18, 994–1004 (2003).

    Article  CAS  Google Scholar 

  229. Li, Q., Sundberg, J. P., Levine, M. A., Terry, S. F. & Uitto, J. The effects of bisphosphonates on ectopic soft tissue mineralization caused by mutations in the ABCC6 gene. Cell Cycle 14, 1082–1089 (2015).

    Article  CAS  Google Scholar 

  230. Dedinszki, D. et al. Oral administration of pyrophosphate inhibits connective tissue calcification. EMBO Mol. Med. 9, 1463–1470 (2017).

    Article  CAS  Google Scholar 

  231. Rutsch, F. et al. Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ. Cardiovasc. Genet. 1, 133–140 (2008).

    Article  CAS  Google Scholar 

  232. Shirai, T. et al. Chondroprotective effect of alendronate in a rabbit model of osteoarthritis. J. Orthop. Res. 29, 1572–1577 (2011).

    Article  CAS  Google Scholar 

  233. Panahifar, A., Maksymowych, W. P. & Doschak, M. R. Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium as a molecular tracer of bone formation. Osteoarthritis Cartilage 20, 694–702 (2012).

    Article  CAS  Google Scholar 

  234. Hayami, T. et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 50, 1193–1206 (2004).

    Article  CAS  Google Scholar 

  235. Khorasani, M. S. et al. Effect of alendronate on post-traumatic osteoarthritis induced by anterior cruciate ligament rupture in mice. Arthritis Res. Ther. 17, 30 (2015).

    Article  Google Scholar 

  236. She, G., Zhou, Z., Zha, Z., Wang, F. & Pan, X. Protective effect of zoledronic acid on articular cartilage and subchondral bone of rabbits with experimental knee osteoarthritis. Exp. Ther. Med. 14, 4901–4909 (2017).

    CAS  Google Scholar 

  237. Lampropoulou-Adamidou, K. et al. Chondroprotective effect of high-dose zoledronic acid: an experimental study in a rabbit model of osteoarthritis. J. Orthop. Res. 32, 1646–1651 (2014).

    Article  CAS  Google Scholar 

  238. Latourte, A., Kloppenburg, M. & Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 16, 673–688 (2020).

    Article  Google Scholar 

  239. Khan, T. et al. ENPP1 enzyme replacement therapy improves blood pressure and cardiovascular function in a mouse model of generalized arterial calcification of infancy. Dis. Model. Mech. 11, dmm035691 (2018).

    Article  CAS  Google Scholar 

  240. Albright, R. A. et al. ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy. Nat. Commun. 6, 10006 (2015).

    Article  CAS  Google Scholar 

  241. Tani, T. et al. Inhibition of tissue-nonspecific alkaline phosphatase protects against medial arterial calcification and improves survival probability in the CKD-MBD mouse model. J. Pathol. 250, 30–41 (2020).

    Article  CAS  Google Scholar 

  242. Opdebeeck, B. et al. Pharmacological TNAP inhibition efficiently inhibits arterial media calcification in a warfarin rat model but deserves careful consideration of potential physiological bone formation/mineralization impairment. Bone 137, 115392 (2020).

    Article  CAS  Google Scholar 

  243. Goettsch, C. et al. TNAP as a therapeutic target for cardiovascular calcification — a discussion of its pleiotropic functions in the body. Cardiovasc. Res. 118, 84–96 (2020).

    Article  Google Scholar 

  244. Perello, J. et al. Mechanism of action of SNF472, a novel calcification inhibitor to treat vascular calcification and calciphylaxis. Br. J. Pharmacol. 177, 4400–4415 (2020).

    CAS  Google Scholar 

  245. Ferrer, M. D. et al. Characterization of SNF472 pharmacokinetics and efficacy in uremic and non-uremic rats models of cardiovascular calcification. PLoS One 13, e0197061 (2018).

    Article  Google Scholar 

  246. Brandenburg, V. M. et al. Improvement in wound healing, pain, and quality of life after 12 weeks of SNF472 treatment: a phase 2 open-label study of patients with calciphylaxis. J. Nephrol. 32, 811–821 (2019).

    Article  CAS  Google Scholar 

  247. Schantl, A. E. et al. Inhibition of vascular calcification by inositol phosphates derivatized with ethylene glycol oligomers. Nat. Commun. 11, 721 (2020).

    Article  CAS  Google Scholar 

  248. Cheung, H. S., Sallis, J. D., Demadis, K. D. & Wierzbicki, A. Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model. Arthritis Rheum. 54, 2452–2461 (2006).

    Article  CAS  Google Scholar 

  249. Sun, Y. et al. Phosphocitrate is potentially a disease-modifying drug for noncrystal-associated osteoarthritis. Biomed. Res. Int. 2013, 326267 (2013).

    Article  Google Scholar 

  250. Ryu, J. H. et al. Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 63, 2732–2743 (2011).

    Article  CAS  Google Scholar 

  251. Lopez-Mejias, R. & Gonzalez-Gay, M. A. IL-6: linking chronic inflammation and vascular calcification. Nat. Rev. Rheumatol. 15, 457–459 (2019).

    Article  Google Scholar 

  252. Williams, C. J. et al. Mutations in osteoprotegerin account for the CCAL1 locus in calcium pyrophosphate deposition disease. Osteoarthritis Cartilage 26, 797–806 (2018).

    Article  CAS  Google Scholar 

  253. Tachmazidou, I. et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat. Genet. 51, 230–236 (2019).

    Article  CAS  Google Scholar 

  254. Wilkins, J. M., Southam, L., Mustafa, Z., Chapman, K. & Loughlin, J. Association of a functional microsatellite within intron 1 of the BMP5 gene with susceptibility to osteoarthritis. BMC Med. Genet. 10, 141 (2009).

    Article  Google Scholar 

  255. Nitschke, Y. & Rutsch, F. Inherited arterial calcification syndromes: etiologies and treatment concepts. Curr. Osteoporos. Rep. 15, 255–270 (2017).

    Article  Google Scholar 

  256. Okawa, A. et al. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat. Genet. 19, 271–273 (1998).

    Article  CAS  Google Scholar 

  257. Kan, L., Hu, M., Gomes, W. A. & Kessler, J. A. Transgenic mice overexpressing BMP4 develop a fibrodysplasia ossificans progressiva (FOP)-like phenotype. Am. J. Pathol. 165, 1107–1115 (2004).

    Article  CAS  Google Scholar 

  258. Fernandez-Martin, S., Lopez-Pena, M., Munoz, F., Permuy, M. & Gonzalez-Cantalapiedra, A. Bisphosphonates as disease-modifying drugs in osteoarthritis preclinical studies: a systematic review from 2000 to 2020. Arthritis Res. Ther. 23, 60 (2021).

    Article  Google Scholar 

  259. Kranenburg, G. et al. Etidronate for prevention of ectopic mineralization in patients with Pseudoxanthoma elasticum. J. Am. Coll. Cardiol. 71, 1117–1126 (2018).

    Article  CAS  Google Scholar 

  260. Richette, P. et al. Efficacy of tocilizumab in patients with hand osteoarthritis: double blind, randomised, placebo-controlled, multicentre trial. Ann. Rheum. Dis. 80, 349–355 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made a substantial contribution to discussion of the content, wrote the article; and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Alexander So.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks F. Oliviero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernabei, I., So, A., Busso, N. et al. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 19, 10–27 (2023). https://doi.org/10.1038/s41584-022-00875-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00875-4

  • Springer Nature Limited

This article is cited by

Navigation