Skip to main content

Advertisement

Log in

Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology

  • Review Article
  • Published:

From Nature Reviews Gastroenterology & Hepatology

View current issue Sign up to alerts

Abstract

Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.

Key points

  • Bile acid (BA)-activated nuclear receptors maintain BA homeostasis by regulating BA metabolism and transport within the enterohepatic circulation.

  • BAs and their nuclear and G protein-coupled receptors also control lipid and/or glucose and energy homeostasis, inflammation and fibrosis as well as cell proliferation and other processes affecting carcinogenic risk.

  • BAs exert immunomodulatory effects via modulation of cytokine secretion from hepatocytes and immune cells.

  • Targeting BA receptors and transporters pharmacologically is a rapidly evolving field of therapeutic opportunities for liver and gastrointestinal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: BA synthesis.
Fig. 2: FXR regulation of BA synthesis and enterohepatic circulation as well as antibacterial defence and inflammatory response in the gut.
Fig. 3: Multiple roles of FXR in regulating lipid and glucose metabolism.
Fig. 4: Pro-inflammatory and anti-inflammatory BA signalling.
Fig. 5: BAs signalling pathways in colon cancer.

Similar content being viewed by others

References

  1. Schaap, F. G., Trauner, M. & Jansen, P. L. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol. 11, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Hofmann, A. F. Biliary secretion and excretion in health and disease: current concepts. Ann. Hepatol. 6, 15–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Li, T. & Chiang, J. Y. Nuclear receptors in bile acid metabolism. Drug Metab. Rev. 45, 145–155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Halilbasic, E., Fuchs, C., Traussnigg, S. & Trauner, M. Farnesoid X receptor agonists and other bile acid signaling strategies for treatment of liver disease. Dig. Dis. 34, 580–588 (2016).

    Article  PubMed  Google Scholar 

  8. Perino, A. et al. TGR5 reduces macrophage migration through mTOR-induced C/EBPbeta differential translation. J. Clin. Invest. 124, 5424–5436 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yoneno, K. et al. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s disease. Immunology 139, 19–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Trabelsi, M. S. et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015).

    Article  PubMed  Google Scholar 

  13. Ducastel, S. et al. The nuclear receptor FXR inhibits glucagon-like peptide-1 secretion in response to microbiota-derived short-chain fatty acids. Sci. Rep. 10, 174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chiang, J. Y. Bile acid metabolism and signaling. Compr. Physiol. 3, 1191–1212 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Arab, J. P., Karpen, S. J., Dawson, P. A., Arrese, M. & Trauner, M. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 65, 350–362 (2017).

    Article  PubMed  Google Scholar 

  16. Ishibashi, S., Schwarz, M., Frykman, P. K., Herz, J. & Russell, D. W. Disruption of cholesterol 7alpha-hydroxylase gene in mice. I. Postnatal lethality reversed by bile acid and vitamin supplementation. J. Biol. Chem. 271, 18017–18023 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Schwarz, M. et al. Disruption of cholesterol 7alpha-hydroxylase gene in mice. II. Bile acid deficiency is overcome by induction of oxysterol 7alpha-hydroxylase. J. Biol. Chem. 271, 18024–18031 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, W. & Chiang, J. Y. Regulation of human sterol 27-hydroxylase gene (CYP27A1) by bile acids and hepatocyte nuclear factor 4alpha (HNF4alpha). Gene 313, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi, S. et al. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J. Lipid Res. 57, 2130–2137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Monte, M. J., Marin, J. J., Antelo, A. & Vazquez-Tato, J. Bile acids: chemistry, physiology, and pathophysiology. World J. Gastroenterol. 15, 804–816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dawson, P. A., Lan, T. & Rao, A. Bile acid transporters. J. Lipid Res. 50, 2340–2357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trauner, M. & Boyer, J. L. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 83, 633–671 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Boyer, J. L. Bile formation and secretion. Compr. Physiol. 3, 1035–1078 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wagner, M., Zollner, G. & Trauner, M. New molecular insights into the mechanisms of cholestasis. J. Hepatol. 51, 565–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Chiang, J. Y. Bile acids: regulation of synthesis. J. Lipid Res. 50, 1955–1966 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, T. T. et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6, 507–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Miao, J. et al. Bile acid signaling pathways increase stability of small heterodimer partner (SHP) by inhibiting ubiquitin-proteasomal degradation. Genes Dev. 23, 986–996 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Byun, S. et al. Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. Nat. Commun. 9, 2590 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Modica, S., Gadaleta, R. M. & Moschetta, A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl. Recept. Signal. 8, e005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Angelin, B., Einarsson, K., Hellstrom, K. & Leijd, B. Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia. J. Lipid Res. 19, 1017–1024 (1978).

    Article  CAS  PubMed  Google Scholar 

  32. Stayrook, K. R. et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 146, 984–991 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Park, M. J. et al. Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha. Biochem. J. 402, 567–574 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamagata, K. et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J. Biol. Chem. 279, 23158–23165 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Borgius, L. J., Steffensen, K. R., Gustafsson, J. A. & Treuter, E. Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. J. Biol. Chem. 277, 49761–49766 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Cariou, B. et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem. 281, 11039–11049 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Cariou, B. et al. Transient impairment of the adaptive response to fasting in FXR-deficient mice. FEBS Lett. 579, 4076–4080 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y. et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl Acad. Sci. USA 103, 1006–1011 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han, S. I. et al. Bile acids enhance the activity of the insulin receptor and glycogen synthase in primary rodent hepatocytes. Hepatology 39, 456–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Fang, Y. et al. Bile acids induce mitochondrial ROS, which promote activation of receptor tyrosine kinases and signaling pathways in rat hepatocytes. Hepatology 40, 961–971 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kir, S. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331, 1621–1624 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Keitel, V. & Haussinger, D. Role of TGR5 (GPBAR1) in Liver Disease. Semin. Liver Dis. 38, 333–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katsuma, S., Hirasawa, A. & Tsujimoto, G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329, 386–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Lasalle, M. et al. Topical intestinal aminoimidazole agonists of G-protein-coupled bile acid receptor 1 promote glucagon like peptide-1 secretion and improve glucose tolerance. J. Med. Chem. 60, 4185–4211 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Cao, H. et al. Intestinally-targeted TGR5 agonists equipped with quaternary ammonium have an improved hypoglycemic effect and reduced gallbladder filling effect. Sci. Rep. 6, 28676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuhre, R. E. et al. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol. Metab. 11, 84–95 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomas, C., Auwerx, J. & Schoonjans, K. Bile acids and the membrane bile acid receptor TGR5–connecting nutrition and metabolism. Thyroid 18, 167–174 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Jansen, P. L. et al. The ascending pathophysiology of cholestatic liver disease. Hepatology 65, 722–738 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Woolbright, B. L., McGill, M. R., Yan, H. & Jaeschke, H. Bile acid-induced toxicity in HepaRG cells recapitulates the response in primary human hepatocytes. Basic Clin. Pharmacol. Toxicol. 118, 160–167 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Woolbright, B. L. et al. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. Toxicol. Appl. Pharmacol. 283, 168–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Galle, P. R., Theilmann, L., Raedsch, R., Otto, G. & Stiehl, A. Ursodeoxycholate reduces hepatotoxicity of bile salts in primary human hepatocytes. Hepatology 12, 486–491 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Spivey, J. R., Bronk, S. F. & Gores, G. J. Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium. J. Clin. Invest. 92, 17–24 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song, P., Zhang, Y. & Klaassen, C. D. Dose-response of five bile acids on serum and liver bile acid concentrations and hepatotoxicty in mice. Toxicol. Sci. 123, 359–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hofmann, A. F. & Roda, A. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J. Lipid Res. 25, 1477–1489 (1984).

    Article  CAS  PubMed  Google Scholar 

  56. Wahlstrom, A., Sayin, S. I., Marschall, H. U. & Backhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  PubMed  Google Scholar 

  57. Miyake, J. H., Wang, S. L. & Davis, R. A. Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase. J. Biol. Chem. 275, 21805–21808 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Sato, K. et al. Pathogenesis of Kupffer cells in cholestatic liver injury. Am. J. Pathol. 186, 2238–2247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Allen, K., Jaeschke, H. & Copple, B. L. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am. J. Pathol. 178, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Allen, K., Kim, N. D., Moon, J. O. & Copple, B. L. Upregulation of early growth response factor-1 by bile acids requires mitogen-activated protein kinase signaling. Toxicol. Appl. Pharmacol. 243, 63–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. O’Brien, K. M. et al. IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis. Am. J. Pathol. 183, 1498–1507 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Bleier, J. I. et al. Biliary obstruction selectively expands and activates liver myeloid dendritic cells. J. Immunol. 176, 7189–7195 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Connolly, M. K. et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J. Clin. Invest. 119, 3213–3225 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rahman, A. H. & Aloman, C. Dendritic cells and liver fibrosis. Biochim. Biophys. Acta 1832, 998–1004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carambia, A. et al. TGF-beta-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. J. Hepatol. 61, 594–599 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Licata, L. A. et al. Biliary obstruction results in PD-1-dependent liver T cell dysfunction and acute inflammation mediated by Th17 cells and neutrophils. J. Leukoc. Biol. 94, 813–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alimov, I. et al. Bile acid analogues are activators of pyrin inflammasome. J. Biol. Chem. 294, 3359–3366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hao, H. et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab. 25, 856–867.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Y. D. et al. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 48, 1632–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Wagner, M., Zollner, G. & Trauner, M. Nuclear bile acid receptor farnesoid X receptor meets nuclear factor-kappaB: new insights into hepatic inflammation. Hepatology 48, 1383–1386 (2008).

    Article  PubMed  Google Scholar 

  72. Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Mencarelli, A. et al. The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J. Immunol. 183, 6657–6666 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Campbell, C. et al. FXR mediates T cell-intrinsic responses to reduced feeding during infection. Proc. Natl Acad. Sci. USA 117, 33446–33454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Renga, B. et al. The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation. PLoS One 8, e54472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wildenberg, M. E. & van den Brink, G. R. FXR activation inhibits inflammation and preserves the intestinal barrier in IBD. Gut 60, 432–433 (2011).

    Article  PubMed  Google Scholar 

  77. Gadaleta, R. M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Massafra, V. et al. Splenic dendritic cell involvement in FXR-mediated amelioration of DSS colitis. Biochim. Biophys. Acta 1862, 166–173 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Fiorucci, S., Biagioli, M., Zampella, A. & Distrutti, E. Bile acids activated receptors regulate innate immunity. Front. Immunol. 9, 1853 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pizzagalli, M. D., Bensimon, A. & Superti-Furga, G. A guide to plasma membrane solute carrier proteins. FEBS J. 288, 2784–2835 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Skazik, C. et al. Differential expression of influx and efflux transport proteins in human antigen presenting cells. Exp. Dermatol. 17, 739–747 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Keitel, V., Donner, M., Winandy, S., Kubitz, R. & Haussinger, D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem. Biophys. Res. Commun. 372, 78–84 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Pols, T. W. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14, 747–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fiorucci, S. et al. Counter-regulatory role of bile acid activated receptors in immunity and inflammation. Curr. Mol. Med. 10, 579–595 (2010).

    CAS  PubMed  Google Scholar 

  86. Ichikawa, R. et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology 136, 153–162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, M. L., Takeda, K. & Sundrud, M. S. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. 12, 851–861 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Pean, N. et al. The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology 58, 1451–1460 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Liston, A. & Whyte, C. E. Bile acids mediate signaling between microbiome and the immune system. Immunol. Cell Biol. 98, 349–350 (2020).

    Article  PubMed  Google Scholar 

  90. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Song, X. et al. Microbial bile acid metabolites modulate gut RORgamma+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Trauner, M., Meier, P. J. & Boyer, J. L. Molecular pathogenesis of cholestasis. N. Engl. J. Med. 339, 1217–1227 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Zollner, G., Marschall, H. U., Wagner, M. & Trauner, M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol. Pharm. 3, 231–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Zollner, G. et al. Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G923–G932 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Zollner, G. et al. Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. J. Hepatol. 39, 480–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Zollner, G. et al. Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J. Hepatol. 38, 717–727 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Trauner, M., Wagner, M., Fickert, P. & Zollner, G. Molecular regulation of hepatobiliary transport systems: clinical implications for understanding and treating cholestasis. J. Clin. Gastroenterol. 39 (Suppl. 2), S111–S124 (2005).

    Article  PubMed  Google Scholar 

  99. Kim, M. S., Shigenaga, J., Moser, A., Feingold, K. & Grunfeld, C. Repression of farnesoid X receptor during the acute phase response. J. Biol. Chem. 278, 8988–8995 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Ghose, R., Zimmerman, T. L., Thevananther, S. & Karpen, S. J. Endotoxin leads to rapid subcellular re-localization of hepatic RXRalpha: A novel mechanism for reduced hepatic gene expression in inflammation. Nucl. Recept. 2, 4 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gomez-Ospina, N. et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat. Commun. 7, 10713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, Y., Jadhav, K. & Zhang, Y. Bile acid receptors in non-alcoholic fatty liver disease. Biochem. Pharmacol. 86, 1517–1524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yuan, L. & Bambha, K. Bile acid receptors and nonalcoholic fatty liver disease. World J. Hepatol. 7, 2811–2818 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ferslew, B. C. et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig. Dis. Sci. 60, 3318–3328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mouzaki, M. et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS One 11, e0151829 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jiao, N. et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67, 1881–1891 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Gottlieb, A. & Canbay, A. Why bile acids are so important in non-alcoholic fatty liver disease (NAFLD) progression. Cells 8, 1358 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  108. Puri, P. et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 67, 534–548 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Jahn, D. & Geier, A. Bile acids in nonalcoholic steatohepatitis: pathophysiological driving force or innocent bystanders? Hepatology 67, 464–466 (2018).

    Article  PubMed  Google Scholar 

  110. Bechmann, L. P. et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 57, 1394–1406 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Grzych, G. et al. NASH-related increases in plasma bile acid levels depend on insulin resistance. JHEP Rep. 3, 100222 (2021).

    Article  PubMed  Google Scholar 

  112. Haeusler, R. A., Astiarraga, B., Camastra, S., Accili, D. & Ferrannini, E. Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids. Diabetes 62, 4184–4191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Legry, V. et al. Bile acid alterations are associated with insulin resistance, but not with NASH, in obese subjects. J. Clin. Endocrinol. Metab. 102, 3783–3794 (2017).

    Article  PubMed  Google Scholar 

  114. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, L. et al. Genetic and microbial associations to plasma and fecal bile acids in obesity relate to plasma lipids and liver fat content. Cell Rep. 33, 108212 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Canet, M. J. et al. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis. Drug. Metab. Dispos. 43, 829–835 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schreuder, T. C. et al. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G440–G445 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Acalovschi, M. et al. Common variants of ABCB4 and ABCB11 and plasma lipid levels: a study in sib pairs with gallstones, and controls. Lipids 44, 521–526 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Pizarro, M. et al. Bile secretory function in the obese Zucker rat: evidence of cholestasis and altered canalicular transport function. Gut 53, 1837–1843 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Baptissart, M. et al. Bile acids: from digestion to cancers. Biochimie 95, 504–517 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Leung, C. et al. Characteristics of hepatocellular carcinoma in cirrhotic and non-cirrhotic non-alcoholic fatty liver disease. World J. Gastroenterol. 21, 1189–1196 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Huang, W. et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 312, 233–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Yang, F. et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 67, 863–867 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Kim, I. et al. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis 28, 940–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Wolfe, A. et al. Increased activation of the Wnt/beta-catenin pathway in spontaneous hepatocellular carcinoma observed in farnesoid X receptor knockout mice. J. Pharmacol. Exp. Ther. 338, 12–21 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pikarsky, E. et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, Y. D., Chen, W. D., Yu, D., Forman, B. M. & Huang, W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-kappaB) in mice. Hepatology 54, 1421–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Dent, P. et al. Conjugated bile acids promote ERK1/2 and AKT activation via a pertussis toxin-sensitive mechanism in murine and human hepatocytes. Hepatology 42, 1291–1299 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Magee, N. & Zhang, Y. Role of early growth response 1 in liver metabolism and liver cancer. Hepatoma Res. 3, 268–277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lanaya, H. et al. EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat. Cell Biol. 16, 972–977 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Holt, J. A. et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 17, 1581–1591 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nicholes, K. et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol. 160, 2295–2307 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. French, D. M. et al. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS One 7, e36713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Desnoyers, L. R. et al. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene 27, 85–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Ho, H. K. et al. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J. Hepatol. 50, 118–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Gauglhofer, C. et al. Up-regulation of the fibroblast growth factor 8 subfamily in human hepatocellular carcinoma for cell survival and neoangiogenesis. Hepatology 53, 854–864 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Heinzle, C. et al. Is fibroblast growth factor receptor 4 a suitable target of cancer therapy? Curr. Pharm. Des. 20, 2881–2898 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Raja, A., Park, I., Haq, F. & Ahn, S. M. FGF19-FGFR4 signaling in hepatocellular carcinoma. Cells 8, 536 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  139. Sawey, E. T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19, 347–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhou, M. et al. Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15. J. Hepatol. 66, 1182–1192 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Zhou, M. et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 74, 3306–3316 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Sun, B. & Karin, M. Obesity, inflammation, and liver cancer. J. Hepatol. 56, 704–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Song, J. et al. Cholangiocarcinoma in patients with primary sclerosing cholangitis (PSC): a comprehensive review. Clin. Rev. Allergy Immunol. 58, 134–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Cannito, S. et al. Fibroinflammatory liver injuries as preneoplastic condition in cholangiopathies. Int. J. Mol. Sci. 19, 3875 (2018).

    Article  PubMed Central  Google Scholar 

  146. Lozano, E. et al. Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development. Mol. Cancer Res. 12, 91–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Werneburg, N. W., Yoon, J. H., Higuchi, H. & Gores, G. J. Bile acids activate EGF receptor via a TGF-alpha-dependent mechanism in human cholangiocyte cell lines. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G31–G36 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, R. et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology 60, 908–918 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Keitel, V., Reich, M. & Haussinger, D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis? Clin. Rev. Allergy Immunol. 48, 218–225 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Reich, M. et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut 65, 487–501 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Dai, J. et al. Impact of bile acids on the growth of human cholangiocarcinoma via FXR. J. Hematol. Oncol. 4, 41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lozano, E. et al. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium-dependent bile acid transporter (ASBT). J. Control. Rel. 216, 93–102 (2015).

    Article  CAS  Google Scholar 

  153. Horvatits, T., Drolz, A., Trauner, M. & Fuhrmann, V. Liver injury and failure in critical illness. Hepatology 70, 2204–2215 (2019).

    Article  PubMed  Google Scholar 

  154. Trauner, M., Fickert, P. & Stauber, R. E. Inflammation-induced cholestasis. J. Gastroenterol. Hepatol. 14, 946–959 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. de Tymowski, C. et al. Contributing factors and outcomes of burn-associated cholestasis. J. Hepatol. 71, 563–572 (2019).

    Article  PubMed  Google Scholar 

  156. Geier, A., Fickert, P. & Trauner, M. Mechanisms of disease: mechanisms and clinical implications of cholestasis in sepsis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 574–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Recknagel, P. et al. Liver dysfunction and phosphatidylinositol-3-kinase signalling in early sepsis: experimental studies in rodent models of peritonitis. PLoS Med. 9, e1001338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Trauner, M., Meier, P. J. & Boyer, J. L. Molecular regulation of hepatocellular transport systems in cholestasis. J. Hepatol. 31, 165–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Denson, L. A., Karpen, S. J., Bogue, C. W. & Jacobs, H. C. Divergent homeobox gene hex regulates promoter of the Na+-dependent bile acid cotransporter. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G347–G355 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Karpen, S. J. et al. Multiple factors regulate the rat liver basolateral sodium-dependent bile acid cotransporter gene promoter. J. Biol. Chem. 271, 15211–15221 (1996).

    Article  CAS  PubMed  Google Scholar 

  161. Trauner, M., Arrese, M., Lee, H., Boyer, J. L. & Karpen, S. J. Endotoxin downregulates rat hepatic ntcp gene expression via decreased activity of critical transcription factors. J. Clin. Invest. 101, 2092–2100 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zollner, G. et al. Induction of short heterodimer partner 1 precedes downregulation of Ntcp in bile duct-ligated mice. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G184–G191 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Geier, A. et al. Cytokine-dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G831–G841 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Lund, M., Kang, L., Tygstrup, N., Wolkoff, A. W. & Ott, P. Effects of LPS on transport of indocyanine green and alanine uptake in perfused rat liver. Am. J. Physiol. 277, G91–G100 (1999).

    CAS  PubMed  Google Scholar 

  165. Cherrington, N. J., Slitt, A. L., Li, N. & Klaassen, C. D. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab. Dispos. 32, 734–741 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Zollner, G. et al. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33, 633–646 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Trauner, M. et al. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology 113, 255–264 (1997).

    Article  CAS  PubMed  Google Scholar 

  168. Denson, L. A. et al. Interleukin-1beta suppresses retinoid transactivation of two hepatic transporter genes involved in bile formation. J. Biol. Chem. 275, 8835–8843 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Jansen, P. L. & Muller, M. Early events in sepsis-associated cholestasis. Gastroenterology 116, 486–488 (1999).

    Article  CAS  PubMed  Google Scholar 

  170. Haussinger, D., Schmitt, M., Weiergraber, O. & Kubitz, R. Short-term regulation of canalicular transport. Semin. Liver Dis. 20, 307–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Kuhlkamp, T., Keitel, V., Helmer, A., Haussinger, D. & Kubitz, R. Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin-proteasome system. Biol. Chem. 386, 1065–1074 (2005).

    Article  PubMed  Google Scholar 

  172. Jenniskens, M., Langouche, L., Vanwijngaerden, Y. M., Mesotten, D. & Van den Berghe, G. Cholestatic liver (dys)function during sepsis and other critical illnesses. Intensive Care Med. 42, 16–27 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Strazzabosco, M., Fabris, L. & Spirli, C. Pathophysiology of cholangiopathies. J. Clin. Gastroenterol. 39 (Suppl. 2), S90–S102 (2005).

    Article  PubMed  Google Scholar 

  174. Booth, A. L., Merwat, S. N., Merwat, S. K. & Stevenson, H. L. Cholangitis lenta: what hepatologists need to know. Clin. Liver Dis. 15, 236–238 (2020).

    Article  Google Scholar 

  175. Spirli, C. et al. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium. Gastroenterology 121, 156–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  176. Spirli, C. et al. Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes. Gastroenterology 124, 737–753 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Fickert, P. et al. Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 123, 1238–1251 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Li, T. & Chiang, J. Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev. 66, 948–983 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Natividad, J. M. et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat. Commun. 9, 2802 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487, 104–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Devkota, S. & Chang, E. B. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig. Dis. 33, 351–356 (2015).

    Article  PubMed  Google Scholar 

  182. Gadaleta, R. M. et al. Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-kappaB signaling in the intestine. Biochim. Biophys. Acta 1812, 851–858 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Nijmeijer, R. M. et al. Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. PLoS One 6, e23745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Attinkara, R. et al. Association of genetic variation in the NR1H4 gene, encoding the nuclear bile acid receptor FXR, with inflammatory bowel disease. BMC Res. Notes 5, 461 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. van Schaik, F. D. et al. Pharmacological activation of the bile acid nuclear farnesoid X receptor is feasible in patients with quiescent Crohn’s colitis. PLoS One 7, e49706 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Cipriani, S. et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS One 6, e25637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Biagioli, M. et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J. Immunol. 199, 718–733 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Payne, C. M., Bernstein, C., Dvorak, K. & Bernstein, H. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis. Clin. Exp. Gastroenterol. 1, 19–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ochsenkuhn, T. et al. Colonic mucosal proliferation is related to serum deoxycholic acid levels. Cancer 85, 1664–1669 (1999).

    Article  CAS  PubMed  Google Scholar 

  190. Bernstein, H., Bernstein, C., Payne, C. M. & Dvorak, K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J. Gastroenterol. 15, 3329–3340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Baek, M. K. et al. Lithocholic acid upregulates uPAR and cell invasiveness via MAPK and AP-1 signaling in colon cancer cells. Cancer Lett. 290, 123–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Nguyen, T. T. et al. Lithocholic acid stimulates IL-8 expression in human colorectal cancer cells via activation of Erk1/2 MAPK and suppression of STAT3 activity. J. Cell Biochem. 118, 2958–2967 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Lee, H. Y., Crawley, S., Hokari, R., Kwon, S. & Kim, Y. S. Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB, PI3K/Akt/IkappaB/NF-kappaB and p38/MSK1/CREB pathways and negative JNK/c-Jun/AP-1 pathway. Int. J. Oncol. 36, 941–953 (2010).

    CAS  PubMed  Google Scholar 

  194. Arvind, P. et al. Lithocholic acid inhibits the expression of HLA class I genes in colon adenocarcinoma cells. Differential effect on HLA-A, -B and -C loci. Mol. Immunol. 31, 607–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  195. Lax, S. et al. Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis. Int. J. Cancer 130, 2232–2239 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Smith, D. L., Keshavan, P., Avissar, U., Ahmed, K. & Zucker, S. D. Sodium taurocholate inhibits intestinal adenoma formation in APCMin/+ mice, potentially through activation of the farnesoid X receptor. Carcinogenesis 31, 1100–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Peng, Z., Raufman, J. P. & Xie, G. Src-mediated cross-talk between farnesoid X and epidermal growth factor receptors inhibits human intestinal cell proliferation and tumorigenesis. PLoS One 7, e48461 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Nguyen, T. T., Ung, T. T., Kim, N. H. & Jung, Y. D. Role of bile acids in colon carcinogenesis. World J. Clin. Cases 6, 577–588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Lindstrom, L. et al. High dose ursodeoxycholic acid in primary sclerosing cholangitis does not prevent colorectal neoplasia. Aliment. Pharmacol. Ther. 35, 451–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Singh, S., Khanna, S., Pardi, D. S., Loftus, E. V. Jr & Talwalkar, J. A. Effect of ursodeoxycholic acid use on the risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a systematic review and meta-analysis. Inflamm. Bowel Dis. 19, 1631–1638 (2013).

    Article  PubMed  Google Scholar 

  201. Hansen, J. D. et al. Ursodiol and colorectal cancer or dysplasia risk in primary sclerosing cholangitis and inflammatory bowel disease: a meta-analysis. Dig. Dis. Sci. 58, 3079–3087 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Nehra, D., Howell, P., Williams, C. P., Pye, J. K. & Beynon, J. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut 44, 598–602 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Menges, M., Muller, M. & Zeitz, M. Increased acid and bile reflux in Barrett’s esophagus compared to reflux esophagitis, and effect of proton pump inhibitor therapy. Am. J. Gastroenterol. 96, 331–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Vaezi, M. F., Singh, S. & Richter, J. E. Role of acid and duodenogastric reflux in esophageal mucosal injury: a review of animal and human studies. Gastroenterology 108, 1897–1907 (1995).

    Article  CAS  PubMed  Google Scholar 

  205. Peng, S. et al. In Barrett’s esophagus patients and Barrett’s cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G129–G139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Huo, X. et al. Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-kappaB activation in benign Barrett’s epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G278–G286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Abdel-Latif, M. M., Inoue, H. & Reynolds, J. V. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells. Eur. J. Cancer Prev. 25, 368–379 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Jolly, A. J., Wild, C. P. & Hardie, L. J. Sodium deoxycholate causes nitric oxide mediated DNA damage in oesophageal cells. Free. Radic. Res. 43, 234–240 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Gambhir, S., Vyas, D., Hollis, M., Aekka, A. & Vyas, A. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World J. Gastroenterol. 21, 3174–3183 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Guan, B., Li, H., Yang, Z., Hoque, A. & Xu, X. Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer 119, 1321–1329 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Camilleri, M. Bile acid diarrhea: prevalence, pathogenesis, and therapy. Gut Liver 9, 332–339 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Walters, J. R. & Appleby, R. N. A variant of FGF19 for treatment of disorders of cholestasis and bile acid metabolism. Ann. Transl. Med. 3, S7 (2015).

    PubMed  PubMed Central  Google Scholar 

  213. Walters, J. R. Bile acid diarrhoea and FGF19: new views on diagnosis, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 11, 426–434 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Oduyebo, I. et al. Effects of NGM282, an FGF19 variant, on colonic transit and bowel function in functional constipation: a randomized phase 2 trial. Am. J. Gastroenterol. 113, 725–734 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Camilleri, M. et al. Irritable bowel syndrome-diarrhea: characterization of genotype by exome sequencing, and phenotypes of bile acid synthesis and colonic transit. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G13–G26 (2014).

    Article  CAS  PubMed  Google Scholar 

  216. Walters, J. R. et al. The response of patients with bile acid diarrhoea to the farnesoid X receptor agonist obeticholic acid. Aliment. Pharmacol. Ther. 41, 54–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Mroz, M. S. et al. Farnesoid X receptor agonists attenuate colonic epithelial secretory function and prevent experimental diarrhoea in vivo. Gut 63, 808–817 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  219. Wang, Y. M., Ong, S. S., Chai, S. C. & Chen, T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin. Drug Metab. Toxicol. 8, 803–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ihunnah, C. A., Jiang, M. & Xie, W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim. Biophys. Acta 1812, 956–963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wallace, K. et al. The PXR is a drug target for chronic inflammatory liver disease. J. Steroid Biochem. Mol. Biol. 120, 137–148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. D’Aldebert, E. et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology 136, 1435–1443 (2009).

    Article  PubMed  Google Scholar 

  223. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  224. McMahan, R. H. et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J. Biol. Chem. 288, 11761–11770 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Li, T. et al. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol. Endocrinol. 25, 1066–1071 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Harach, T. et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci. Rep. 2, 430 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Brighton, C. A. et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology 156, 3961–3970 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Chiang, J. Y. Sphingosine-1-phosphate receptor 2: a novel bile acid receptor and regulator of hepatic lipid metabolism? Hepatology 61, 1118–1120 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Beuers, U., Trauner, M., Jansen, P. & Poupon, R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J. Hepatol. 62, S25–S37 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Beuers, U. et al. The biliary HCO3 umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52, 1489–1496 (2010).

    Article  CAS  PubMed  Google Scholar 

  231. Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000).

    Article  CAS  PubMed  Google Scholar 

  232. Ananthanarayanan, M., Balasubramanian, N., Makishima, M., Mangelsdorf, D. J. & Suchy, F. J. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J. Biol. Chem. 276, 28857–28865 (2001).

    Article  CAS  PubMed  Google Scholar 

  233. Huang, L. et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J. Biol. Chem. 278, 51085–51090 (2003).

    Article  CAS  PubMed  Google Scholar 

  234. Baghdasaryan, A. et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2−/− (Abcb4−/−) mouse cholangiopathy model by promoting biliary HCO3 output. Hepatology 54, 1303–1312 (2011).

    Article  CAS  PubMed  Google Scholar 

  235. Hirschfield, G. M. et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 148, 751–761 e758 (2015).

    Article  CAS  PubMed  Google Scholar 

  236. Nevens, F. et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N. Engl. J. Med. 375, 631–643 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. Trauner, M. et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study. Lancet Gastroenterol. Hepatol. 4, 445–453 (2019).

    Article  PubMed  Google Scholar 

  238. Kowdley, K. V. et al. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology 67, 1890–1902 (2018).

    Article  CAS  PubMed  Google Scholar 

  239. Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184–2196 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Kowdley, K. V. et al. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J. Hepatol. 73, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Trauner, M. et al. The nonsteroidal farnesoid X receptor agonist cilofexor (GS-9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis. Hepatology 70, 788–801 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Kowdley, K. V. M. G., Pagadala, M. R., Gulamhusein, A., Swain, M. G. & Neff, G. W. The nonsteroidal farnesoid x receptor (FXR) agonist cilofexor improves liver biochemistry in patients with primary biliary cholangitis (PBC): a phase 2, randomized, placebo-controlled trial. Hepatology 70, 2 (2019).

    Google Scholar 

  243. Mayo, M. J. et al. NGM282 for treatment of patients with primary biliary cholangitis: a multicenter, randomized, double-blind, placebo-controlled trial. Hepatol. Commun. 2, 1037–1050 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hirschfield, G. M. et al. Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial. J. Hepatol. 70, 483–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  245. Duboc, H., Tache, Y. & Hofmann, A. F. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig. Liver Dis. 46, 302–312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Trauner, M., Fuchs, C. D., Halilbasic, E. & Paumgartner, G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 65, 1393–1404 (2017).

    Article  PubMed  Google Scholar 

  247. Miethke, A. G. et al. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice. Hepatology 63, 512–523 (2016).

    Article  CAS  PubMed  Google Scholar 

  248. Baghdasaryan, A. et al. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. J. Hepatol. 64, 674–681 (2016).

    Article  CAS  PubMed  Google Scholar 

  249. Hegade, V. S. et al. Effect of ileal bile acid transporter inhibitor GSK2330672 on pruritus in primary biliary cholangitis: a double-blind, randomised, placebo-controlled, crossover, phase 2a study. Lancet 389, 1114–1123 (2017).

    Article  CAS  PubMed  Google Scholar 

  250. Mayo, M. J. et al. A randomized, controlled, phase 2 study of Maralixibat in the treatment of itching associated with primary biliary cholangitis. Hepatol. Commun. 3, 365–381 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Al-Dury, S. & Marschall, H. U. Ileal bile acid transporter inhibition for the treatment of chronic constipation, cholestatic pruritus, and NASH. Front. Pharmacol. 9, 931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Karpen, S. J., Kelly, D., Mack, C. & Stein, P. Ileal bile acid transporter inhibition as an anticholestatic therapeutic target in biliary atresia and other cholestatic disorders. Hepatol. Int. 14, 677–689 (2020).

    Article  PubMed  Google Scholar 

  253. Yoon, Y. B. et al. Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology 90, 837–852 (1986).

    Article  CAS  PubMed  Google Scholar 

  254. Fickert, P. et al. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J. Hepatol. 67, 549–558 (2017).

    Article  CAS  PubMed  Google Scholar 

  255. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).

    Article  CAS  PubMed  Google Scholar 

  257. Marschall, H. U. et al. Combined rifampicin and ursodeoxycholic acid treatment does not amplify rifampicin effects on hepatic detoxification and transport systems in humans. Digestion 86, 244–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  258. Lindor, K. D. et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology 39, 770–778 (2004).

    Article  CAS  PubMed  Google Scholar 

  259. Leuschner, U. F. et al. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology 52, 472–479 (2010).

    Article  CAS  PubMed  Google Scholar 

  260. Ratziu, V. et al. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J. Hepatol. 54, 1011–1019 (2011).

    Article  CAS  PubMed  Google Scholar 

  261. Kars, M. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59, 1899–1905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Ding, L., Yang, L., Wang, Z. & Huang, W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm. Sin. B 5, 135–144 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    Article  CAS  PubMed  Google Scholar 

  264. Patel, K. et al. Cilofexor, a nonsteroidal FXR agonist, in non-cirrhotic patients with nonalcoholic steatohepatitis: a phase 2 randomized controlled trial. Hepatology 72, 58–71 (2020).

    Article  CAS  PubMed  Google Scholar 

  265. Loomba, R. et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis due to NASH. Hepatology 73, 625–643 (2021).

    Article  CAS  PubMed  Google Scholar 

  266. Lucas, K. J. Tropifexor, a highly potent FXR agonist, produces robust and dose-dependent reductions in hepatic fat and serum alanine aminotransferase in patients with fibrotic NASH after 12 weeks of therapy: FLIGHT-FXR Part C interim results. Dig. Liver Dis. 52, e38 (2020).

    Article  Google Scholar 

  267. Cicione, C., Degirolamo, C. & Moschetta, A. Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver. Hepatology 56, 2404–2411 (2012).

    Article  CAS  PubMed  Google Scholar 

  268. Harrison, S. A. et al. Efficacy and safety of Aldafermin, an engineered FGF19 Analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology 160, 219–231.e1 (2021).

    Article  CAS  PubMed  Google Scholar 

  269. Harrison, S. A. et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 391, 1174–1185 (2018).

    Article  CAS  PubMed  Google Scholar 

  270. Harrison, S. A. et al. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatology 71, 1198–1212 (2020).

    Article  CAS  PubMed  Google Scholar 

  271. Rinella, M. E. et al. Rosuvastatin improves the FGF19 analogue NGM282-associated lipid changes in patients with non-alcoholic steatohepatitis. J. Hepatol. 70, 735–744 (2019).

    Article  CAS  PubMed  Google Scholar 

  272. Loomba, R. et al. The commensal microbe veillonella as a marker for response to an FGF19 analog in NASH. Hepatology 73, 126–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  273. Trauner, M. et al. Potential of nor-ursodeoxycholic acid in cholestatic and metabolic disorders. Dig. Dis. 33, 433–439 (2015).

    Article  PubMed  Google Scholar 

  274. Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  275. Parseus, A. et al. Microbiota-induced obesity requires farnesoid X receptor. Gut 66, 429–437 (2017).

    Article  CAS  PubMed  Google Scholar 

  276. Ilan, Y. Leaky gut and the liver: a role for bacterial translocation in nonalcoholic steatohepatitis. World J. Gastroenterol. 18, 2609–2618 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Wigg, A. J. et al. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48, 206–211 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Wyke, R. J. Problems of bacterial infection in patients with liver disease. Gut 28, 623–641 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Clements, W. D. et al. Role of the gut in the pathophysiology of extrahepatic biliary obstruction. Gut 39, 587–593 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Hackstein, C. P. et al. Gut microbial translocation corrupts myeloid cell function to control bacterial infection during liver cirrhosis. Gut 66, 507–518 (2017).

    Article  CAS  PubMed  Google Scholar 

  281. Fouts, D. E., Torralba, M., Nelson, K. E., Brenner, D. A. & Schnabl, B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J. Hepatol. 56, 1283–1292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Maillette de Buy Wenniger, L. & Beuers, U. Bile salts and cholestasis. Dig. Liver Dis. 42, 409–418 (2010).

    Article  PubMed  Google Scholar 

  283. Hegade, V. S., Speight, R. A., Etherington, R. E. & Jones, D. E. Novel bile acid therapeutics for the treatment of chronic liver diseases. Ther. Adv. Gastroenterol. 9, 376–391 (2016).

    Article  CAS  Google Scholar 

  284. Lorenzo-Zuniga, V. et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37, 551–557 (2003).

    Article  CAS  PubMed  Google Scholar 

  285. Hofmann, A. F. & Eckmann, L. How bile acids confer gut mucosal protection against bacteria. Proc. Natl Acad. Sci. USA 103, 4333–4334 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 85, 9–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  287. Schnappauf, O., Chae, J. J., Kastner, D. L. & Aksentijevich, I. The pyrin inflammasome in health and disease. Front. Immunol. 10, 1745 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Kohli, R. et al. Bile acid signaling: mechanism for bariatric surgery, cure for NASH? Dig. Dis. 33, 440–446 (2015).

    Article  PubMed  Google Scholar 

  289. Ryan, K. K. et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509, 183–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Manning, S., Pucci, A. & Batterham, R. L. GLP-1: a mediator of the beneficial metabolic effects of bariatric surgery? Physiology 30, 50–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  291. Nakatani, H. et al. Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metabolism 58, 1400–1407 (2009).

    Article  CAS  PubMed  Google Scholar 

  292. Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22, 228–238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.T. is supported by grants I2755-B30 and F7310-B21 from the Austrian Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.T. conceptualized the article, and reviewed and edited the manuscript before submission. C.D.F. wrote the article.

Corresponding author

Correspondence to Michael Trauner.

Ethics declarations

Competing interests

M.T. discloses that he has served as speaker for Falk Foundation, Gilead, Intercept and MSD; he has advised for Albireo, BiomX, Boehringer Ingelheim, Falk Pharma GmbH, Genfit, Gilead, Intercept, Janssen, MSD, Novartis, Phenex, Regulus and Shire. He further received travel grants from Abbvie, Falk Pharma GmbH, Gilead, and Intercept and research grants from Albireo, Alnylam, Cymabay, Falk, Gilead, Intercept, MSD Takeda and UltraGenyx. He is also co-inventor of patents on the medical use of NorUDCA filed by the Medical Universities of Graz and Vienna. C.D.F. received travel grants from Gilead, Falk Pharma GmbH and Abbvie.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Kiran Koelfat, who co-reviewed with Frank Schaap; John Chiang; and Jose Marin for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, C.D., Trauner, M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 19, 432–450 (2022). https://doi.org/10.1038/s41575-021-00566-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00566-7

  • Springer Nature Limited

This article is cited by

Navigation