Skip to main content

Advertisement

Log in

TGR5: Pathogenetic Role and/or Therapeutic Target in Fibrosing Cholangitis?

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Primary sclerosing cholangitis (PSC) is a chronic inflammatory disease affecting the intrahepatic and extrahepatic biliary tree leading to bile duct strictures, progressive cholestasis, and development of liver fibrosis and cirrhosis. The pathogenesis of PSC is still elusive; however, both an immune-mediated injury of the bile ducts as well as increased recruitment of intestinal-primed T lymphocytes to the biliary tracts seem to contribute to disease development and progression. TGR5 (Gpbar-1) is a G-protein-coupled receptor responsive to bile acids, which is expressed in cholangiocytes, intestinal epithelial cells, and macrophages of the liver and intestine as well as in CD14-positive monocytes of the peripheral blood. Activation of TGR5 in biliary epithelial cells promotes chloride and bicarbonate secretion, triggers cell proliferation, and prevents apoptotic cell death. In immune cells, stimulation of TGR5 inhibits cytokine expression and secretion, thus reducing systemic as well as hepatic and intestinal inflammation. The expression pattern of TGR5 in the liver and intestine as well as the potential protective functions of TGR5 suggest a role for this receptor in the pathogenesis of PSC. While mutations in the coding region of the TGR5 gene are too rare to contribute to overall disease susceptibility, the expression and localization of the receptor have not been studied in PSC livers. Pharmacological activation of TGR5 in mice promotes protective mechanisms in biliary epithelial cells and reduces hepatic and systemic inflammation; however, it also provokes pruritus. Further studies are needed to predict the potential benefits as well as side effects of TGR5 agonist treatment in PSC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AE:

Anionic exchanger

BEC:

Biliary epithelial cell (cholangiocyte)

CA:

Cholic acid

cAMP:

Cyclic AMP

CCA:

Cholangiocarcinoma

CDCA:

Chenodeoxycholic acid

CFTR:

Cystic fibrosis transmembrane conductance regulator

CRC:

Colorectal cancer

DCA:

Deoxycholic acid

IBD:

Inflammatory bowel disease

IL:

Interleukin

INT-777:

6α-Ethyl-23(S)-methyl-cholic acid (EMCA)

LCA:

Lithocholic acid

LPS:

Lipopolysaccharide

NF-κB:

Nuclear factor κB

PSC:

Primary sclerosing cholangitis

SNP:

Single nucleotide polymorphism

TNF-α:

Tumor necrosis factor alpha

TLCA:

Taurolithocholic acid

UC:

Ulcerative colitis

References

  1. Karlsen TH, Schrumpf E, Boberg KM (2010) Primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 24:655–666

    Article  CAS  PubMed  Google Scholar 

  2. Hirschfield GM, Karlsen TH, Lindor KD, Adams DH (2013) Primary sclerosing cholangitis. Lancet 382:1587–1599

    Article  PubMed  Google Scholar 

  3. Bowlus CL (2011) Cutting edge issues in primary sclerosing cholangitis. Clin Rev Allergy Immunol 41:139–150

    Article  CAS  PubMed  Google Scholar 

  4. Karlsen TH, Boberg KM (2013) Update on primary sclerosing cholangitis. J Hepatol 59:571–582

    Article  PubMed  Google Scholar 

  5. O'Mahony CA, Vierling JM (2006) Etiopathogenesis of primary sclerosing cholangitis. Semin Liver Dis 26:3–21

    Article  PubMed  Google Scholar 

  6. Chapman R, Cullen S (2008) Etiopathogenesis of primary sclerosing cholangitis. World J Gastroenterol 14:3350–3359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pollheimer MJ, Halilbasic E, Fickert P, Trauner M (2011) Pathogenesis of primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 25:727–739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Worthington J, Cullen S, Chapman R (2005) Immunopathogenesis of primary sclerosing cholangitis. Clin Rev Allergy Immunol 28:93–103

    Article  CAS  PubMed  Google Scholar 

  9. Ponsioen CY (2011) Novel developments in IBD-related sclerosing cholangitis. Best Pract Res Clin Gastroenterol 25(Suppl 1):S15–S18. doi:10.1016/S1521-6918:-1

    Article  PubMed  Google Scholar 

  10. Ponsioen CY, Kuiper H, ten Kate FJ, de van Milligen WM, van Deventer SJ, Tytgat GN (1999) Immunohistochemical analysis of inflammation in primary sclerosing cholangitis. Eur J Gastroenterol Hepatol 11:769–774

    Article  CAS  PubMed  Google Scholar 

  11. Seidel D, Eickmeier I, Kuhl AA, Hamann A, Loddenkemper C, Schott E (2014) CD8 T cells primed in the gut-associated lymphoid tissue induce immune-mediated cholangitis in mice. Hepatology 59:601–611

    Article  CAS  PubMed  Google Scholar 

  12. Fickert P, Fuchsbichler A, Wagner M, Zollner G, Kaser A, Tilg H, Krause R, Lammert F, Langner C, Zatloukal K, Marschall HU, Denk H, Trauner M (2004) Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 127:261–274

    Article  CAS  PubMed  Google Scholar 

  13. Alabraba E, Nightingale P, Gunson B, Hubscher S, Olliff S, Mirza D, Neuberger J (2009) A re-evaluation of the risk factors for the recurrence of primary sclerosing cholangitis in liver allografts. Liver Transpl 15:330–340

    Article  PubMed  Google Scholar 

  14. Gizard E, Ford AC, Bronowicki JP, Peyrin-Biroulet L (2014) Systematic review: the epidemiology of the hepatobiliary manifestations in patients with inflammatory bowel disease. Aliment Pharmacol Ther 40:3–15

    Article  CAS  PubMed  Google Scholar 

  15. Liaskou E, Jeffery LE, Trivedi PJ, Reynolds GM, Suresh S, Bruns T, Adams DH, Sansom DM, Hirschfield GM (2014) Loss of CD28 expression by liver-infiltrating T cells contributes to pathogenesis of primary sclerosing cholangitis. Gastroenterology 147(1):221–232

    Article  CAS  PubMed  Google Scholar 

  16. Alemi F, Poole DP, Chiu J, Schoonjans K, Cattaruzza F, Grider JR, Bunnett NW, Corvera CU (2013) The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144:145–154

    Article  CAS  PubMed  Google Scholar 

  17. Ward JB, Mroz MS, Keely SJ (2013) The bile acid receptor, TGR5, regulates basal and cholinergic-induced secretory responses in rat colon. Neurogastroenterol Motil 25:708–711

    Article  CAS  PubMed  Google Scholar 

  18. Keitel V, Häussinger D (2013) TGR5 in cholangiocytes. Curr Opin Gastroenterol 29:299–304

    Article  CAS  PubMed  Google Scholar 

  19. Keitel V, Häussinger D (2012) Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol 36:412–419

    Article  CAS  PubMed  Google Scholar 

  20. Keitel V, Häussinger D (2011) TGR5 in the biliary tree. Dig Dis 29:45–47

    Article  PubMed  Google Scholar 

  21. Cipriani S, Mencarelli A, Chini MG, Distrutti E, Renga B, Bifulco G, Baldelli F, Donini A, Fiorucci S (2011) The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS One 6:e25637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pols TW, Nomura M, Harach T, Lo SG, Oosterveer MH, Thomas C, Rizzo G, Gioiello A, Adorini L, Pellicciari R, Auwerx J, Schoonjans K (2011) TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 14:747–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Keitel V, Ullmer C, Häussinger D (2010) The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. Biol Chem 391:785–789

    Article  CAS  PubMed  Google Scholar 

  24. Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D (2009) The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 50:861–870

    Article  CAS  PubMed  Google Scholar 

  25. Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D (2008) Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun 372:78–84

    Article  CAS  PubMed  Google Scholar 

  26. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278:9435–9440

    Article  CAS  PubMed  Google Scholar 

  27. Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H, Tanaka K (2002) Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 298:714–719

    Article  CAS  PubMed  Google Scholar 

  28. Sato H, Macchiarulo A, Thomas C, Gioiello A, Une M, Hofmann AF, Saladin R, Schoonjans K, Pellicciari R, Auwerx J (2008) Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. J Med Chem 51:1831–1841

    Article  CAS  PubMed  Google Scholar 

  29. Wang YD, Chen WD, Yu D, Forman BM, Huang W (2011) The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-kappaB) in mice. Hepatology 54:1421–1432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Masyuk AI, Huang BQ, Radtke BN, Gajdos GB, Splinter PL, Masyuk TV, Gradilone SA, LaRusso NF (2013) Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am J Physiol Gastrointest Liver Physiol 304:G1013–G1024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Beuers U, Maroni L, Elferink RO (2012) The biliary HCO(3)(-) umbrella: experimental evidence revisited. Curr Opin Gastroenterol 28:253–257

    Article  CAS  PubMed  Google Scholar 

  32. Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP (2010) The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52:1489–1496

    Article  CAS  PubMed  Google Scholar 

  33. Hohenester S, Wenniger LM, Paulusma CC, van Vliet SJ, Jefferson DM, Elferink RP, Beuers U (2012) A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55:173–183

    Article  CAS  PubMed  Google Scholar 

  34. Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO 3 - transporters. Pflugers Arch 447:495–509

    Article  CAS  PubMed  Google Scholar 

  35. Salas JT, Banales JM, Sarvide S, Recalde S, Ferrer A, Uriarte I, Oude Elferink RP, Prieto J, Medina JF (2008) Ae2a, b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology 134:1482–1493

    Article  CAS  PubMed  Google Scholar 

  36. Melero S, Spirli C, Zsembery A, Medina JF, Joplin RE, Duner E, Zuin M, Neuberger JM, Prieto J, Strazzabosco M (2002) Defective regulation of cholangiocyte Cl-/HCO3(-) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology 35:1513–1521

    Article  CAS  PubMed  Google Scholar 

  37. Strazzabosco M, Joplin R, Zsembery A, Wallace L, Spirli C, Fabris L, Granato A, Rossanese A, Poci C, Neuberger JM, Okolicsanyi L, Crepaldi G (1997) Na(+)-dependent and -independent Cl-/HCO-3 exchange mediate cellular HCO3- transport in cultured human intrahepatic bile duct cells. Hepatology 25:976–985

    Article  CAS  PubMed  Google Scholar 

  38. Uriarte I, Banales JM, Saez E, Arenas F, Oude Elferink RP, Prieto J, Medina JF (2010) Bicarbonate secretion of mouse cholangiocytes involves Na(+)-HCO(3)(-) cotransport in addition to Na(+)-independent Cl(-)/HCO(3)(-) exchange. Hepatology 51:891–902

    Article  CAS  PubMed  Google Scholar 

  39. Alpini G, Glaser S, Baiocchi L, Francis H, Xia X, LeSage G (2005) Secretin activation of the apical Na+-dependent bile acid transporter is associated with cholehepatic shunting in rats. Hepatology 41:1037–1045

    Article  CAS  PubMed  Google Scholar 

  40. Howard M, Jiang X, Stolz DB, Hill WG, Johnson JA, Watkins SC, Frizzell RA, Bruton CM, Robbins PD, Weisz OA (2000) Forskolin-induced apical membrane insertion of virally expressed, epitope-tagged CFTR in polarized MDCK cells. Am J Physiol Cell Physiol 279:C375–C382

    CAS  PubMed  Google Scholar 

  41. Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, Mangelsdorf DJ (2011) The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol 25:1066–1071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Pellicciari R, Gioiello A, Macchiarulo A, Thomas C, Rosatelli E, Natalini B, Sardella R, Pruzanski M, Roda A, Pastorini E, Schoonjans K, Auwerx J (2009) Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem 52:7958–7961

    Article  CAS  PubMed  Google Scholar 

  43. Alpini G, Glaser S, Robertson W, Phinizy JL, Rodgers RE, Caligiuri A, LeSage G (1997) Bile acids stimulate proliferative and secretory events in large but not small cholangiocytes. Am J Physiol 273:G518–G529

    CAS  PubMed  Google Scholar 

  44. Alpini G, Glaser SS, Ueno Y, Rodgers R, Phinizy JL, Francis H, Baiocchi L, Holcomb LA, Caligiuri A, LeSage GD (1999) Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid-regulated ductal secretion. Gastroenterology 116:179–186

    Article  CAS  PubMed  Google Scholar 

  45. Keitel V, Reinehr R, Gatsios P, Rupprecht C, Görg B, Selbach O, Häussinger D, Kubitz R (2007) The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 45:695–704

    Article  CAS  PubMed  Google Scholar 

  46. Reinehr R, Häussinger D (2004) Inhibition of bile salt-induced apoptosis by cyclic AMP involves serine/threonine phosphorylation of CD95. Gastroenterology 126:249–262

    Article  CAS  PubMed  Google Scholar 

  47. Keitel V, Reinehr R, Reich M, Sommerfeld A, Cupisti K, Knoefel WT, Häussinger D (2011) The membrane-bound bile acid receptor TGR5 (Gpbar-1) is highly expressed in intrahepatic cholangiocarcinoma (abstract). Hepatology 54:869

    Google Scholar 

  48. Haselow K, Bode JG, Wammers M, Ehlting C, Keitel V, Kleinebrecht L, Schupp AK, Häussinger D, Graf D (2013) Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J Leukoc Biol 94:1253–1264

    Article  PubMed  Google Scholar 

  49. Keitel V (2012) Bile acids as extrahepatic and interorgan signaling molecules. In: Häussinger D, Keitel V, Kubitz R (eds) Hepatobiliary transport in health and disease. DeGruyter Publishing, Berlin, pp 117–129

    Google Scholar 

  50. Yoneno K, Hisamatsu T, Shimamura K, Kamada N, Ichikawa R, Kitazume MT, Mori M, Uo M, Namikawa Y, Matsuoka K, Sato T, Koganei K, Sugita A, Kanai T, Hibi T (2013) TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s disease. Immunology 139:19–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, Pelayo JC, Bunnett NW, Corvera CU (2010) Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil 22:814–825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10:167–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Camilleri M, Vazquez-Roque MI, Carlson P, Burton D, Wong BS, Zinsmeister AR (2011) Association of bile acid receptor TGR5 variation and transit in health and lower functional gastrointestinal disorders. Neurogastroenterol Motil 23:995–999, e458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K (2011) The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 54:1263–1272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Vassileva G, Golovko A, Markowitz L, Abbondanzo SJ, Zeng M, Yang S, Hoos L, Tetzloff G, Levitan D, Murgolo NJ, Keane K, Davis HR Jr, Hedrick J, Gustafson EL (2006) Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem J 398:423–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Vassileva G, Hu W, Hoos L, Tetzloff G, Yang S, Liu L, Kang L, Davis HR, Hedrick JA, Lan H, Kowalski T, Gustafson EL (2010) Gender-dependent effect of Gpbar1 genetic deletion on the metabolic profiles of diet-induced obese mice. J Endocrinol 205:225–232

    Article  CAS  PubMed  Google Scholar 

  57. Maruyama T, Tanaka K, Suzuki J, Miyoshi H, Harada N, Nakamura T, Miyamoto Y, Kanatani A, Tamai Y (2006) Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J Endocrinol 191:197–205

    Article  CAS  PubMed  Google Scholar 

  58. Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G, Domingues FS, Albrecht M, Nothnagel M, Ellinghaus D, Sina C, Onnie CM, Weersma RK, Stokkers PC, Wijmenga C, Gazouli M, Strachan D, McArdle WL, Vermeire S, Rutgeerts P, Rosenstiel P, Krawczak M, Vatn MH, Mathew CG, Schreiber S (2008) Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 40:1319–1323

    Article  CAS  PubMed  Google Scholar 

  59. Karlsen TH, Franke A, Melum E, Kaser A, Hov JR, Balschun T, Lie BA, Bergquist A, Schramm C, Weismuller TJ, Gotthardt D, Rust C, Philipp EE, Fritz T, Henckaerts L, Weersma RK, Stokkers P, Ponsioen CY, Wijmenga C, Sterneck M, Nothnagel M, Hampe J, Teufel A, Runz H, Rosenstiel P, Stiehl A, Vermeire S, Beuers U, Manns MP, Schrumpf E, Boberg KM, Schreiber S (2010) Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology 138:1102–1111

    Article  PubMed  Google Scholar 

  60. Hov JR, Keitel V, Laerdahl JK, Spomer L, Ellinghaus E, ElSharawy A, Melum E, Boberg KM, Manke T, Balschun T, Schramm C, Bergquist A, Weismuller T, Gotthardt D, Rust C, Henckaerts L, Onnie CM, Weersma RK, Sterneck M, Teufel A, Runz H, Stiehl A, Ponsioen CY, Wijmenga C, Vatn MH, Stokkers PC, Vermeire S, Mathew CG, Lie BA, Beuers U, Manns MP, Schreiber S, Schrumpf E, Häussinger D, Franke A, Karlsen TH (2010) Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS One 5:e12403

    Article  PubMed Central  PubMed  Google Scholar 

  61. Bergquist A, Ekbom A, Olsson R, Kornfeldt D, Loof L, Danielsson A, Hultcrantz R, Lindgren S, Prytz H, Sandberg-Gertzen H, Almer S, Granath F, Broome U (2002) Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol 36:321–327

    Article  PubMed  Google Scholar 

  62. Trauner M, Halilbasic E, Baghdasaryan A, Moustafa T, Krones E, Fickert P, Hofer H, Penner E (2012) Primary sclerosing cholangitis: new approaches to diagnosis, surveillance and treatment. Dig Dis 30(Suppl 1):39–47. doi:10.1159/000341123.:39-47

    Article  PubMed  Google Scholar 

  63. Bayerdorffer E, Mannes GA, Ochsenkuhn T, Dirschedl P, Wiebecke B, Paumgartner G (1995) Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut 36:268–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Shukla VK, Tiwari SC, Roy SK (1993) Biliary bile acids in cholelithiasis and carcinoma of the gall bladder. Eur J Cancer Prev 2:155–160

    Article  CAS  PubMed  Google Scholar 

  65. Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, Bernstein H (2011) Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 85:863–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Sirica AE (2005) Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. Hepatology 41:5–15

    Article  PubMed  Google Scholar 

  67. Blechacz B, Gores GJ (2008) Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology 48:308–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Alemi F, Kwon E, Poole DP, Lieu T, Lyo V, Cattaruzza F, Cevikbas F, Steinhoff M, Nassini R, Materazzi S, Guerrero-Alba R, Valdez-Morales E, Cottrell GS, Schoonjans K, Geppetti P, Vanner SJ, Bunnett NW, Corvera CU (2013) The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest 123:1513–1530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Keitel V, Görg B, Bidmon HJ, Zemtsova I, Spomer L, Zilles K, Häussinger D (2010) The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 58:1794–1805

    Article  PubMed  Google Scholar 

  70. Chapman R, Fevery J, Kalloo A, Nagorney DM, Boberg KM, Shneider B, Gores GJ (2010) Diagnosis and management of primary sclerosing cholangitis. Hepatology 51:660–678

    Article  CAS  PubMed  Google Scholar 

  71. EASL clinical practice guidelines: management of cholestatic liver diseases. J Hepatol 2009; 51:237–67

  72. Van Nieuwkerk CM, Elferink RP, Groen AK, Ottenhoff R, Tytgat GN, Dingemans KP, Van Den Bergh Weerman MA, Offerhaus GJ (1996) Effects of ursodeoxycholate and cholate feeding on liver disease in FVB mice with a disrupted mdr2 P-glycoprotein gene. Gastroenterology 111:165–171

    Article  PubMed  Google Scholar 

  73. Baghdasaryan A, Claudel T, Gumhold J, Silbert D, Adorini L, Roda A, Vecchiotti S, Gonzalez FJ, Schoonjans K, Strazzabosco M, Fickert P, Trauner M (2011) Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO output. Hepatology 54:1303–1312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Hong J, Behar J, Wands J, Resnick M, Wang LJ, DeLellis RA, Lambeth D, Souza RF, Spechler SJ, Cao W (2010) Role of a novel bile acid receptor TGR5 in the development of oesophageal adenocarcinoma. Gut 59:170–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Yasuda H, Hirata S, Inoue K, Mashima H, Ohnishi H, Yoshiba M (2007) Involvement of membrane-type bile acid receptor M-BAR/TGR5 in bile acid-induced activation of epidermal growth factor receptor and mitogen-activated protein kinases in gastric carcinoma cells. Biochem Biophys Res Commun 354:154–159

    Article  CAS  PubMed  Google Scholar 

  76. Kubitz R, Wettstein M, Warskulat U, Häussinger D (1999) Regulation of the multidrug resistance protein 2 in the rat liver by lipopolysaccharide and dexamethasone. Gastroenterology 116:401–410

    Article  CAS  PubMed  Google Scholar 

  77. Häussinger D, Reinehr R, Keitel V (2012) Bile acid signaling in the liver and the biliary tree. In: Häussinger D, Keitel V, Kubitz R (eds) Hepatobiliary transport in health and disease. DeGruyter Publishing, Berlin, pp 85–102

    Chapter  Google Scholar 

Download references

Acknowledgments

Our research is supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 974 Düsseldorf and Klinische Forschergruppe 217. We thank Mark Pruzanski, Luciano Adorini, and David Shapiro from Intercept Pharmaceuticals for providing the INT-777.

Conflict of Interest

VK, MR, and DH have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Verena Keitel or Dieter Häussinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keitel, V., Reich, M. & Häussinger, D. TGR5: Pathogenetic Role and/or Therapeutic Target in Fibrosing Cholangitis?. Clinic Rev Allerg Immunol 48, 218–225 (2015). https://doi.org/10.1007/s12016-014-8443-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-014-8443-x

Keywords

Navigation