Skip to main content

Advertisement

Log in

Global trends in the epidemiology of bladder cancer: challenges for public health and clinical practice

  • Review Article
  • Published:

From Nature Reviews Clinical Oncology

View current issue Sign up to alerts

Abstract

Bladder cancer is among the ten most common cancers globally, causes considerable morbidity and mortality and is, therefore, a substantial burden for health-care systems. The incidence of bladder cancer is affected by demographic trends, most notably population growth and ageing, as well as exposure to risk factors, especially tobacco smoking. Consequently, the incidence has not been stable throughout the world over time, nor will it be in the near future. Further primary prevention efforts are of the utmost importance to reduce the medical and financial burden of bladder cancer on populations and health-care systems. Simultaneously, less-invasive and lower-cost approaches for the diagnosis of both primary and recurrent bladder cancers are required to address challenges posed by the increasing shortage of health-care professionals and limited financial resources worldwide. In this regard, urinary biomarkers have demonstrated promising diagnostic accuracy and efficiency. Awareness of the risk factors and symptoms of bladder cancer should also be increased in society, particularly among health-care professionals and high-risk groups. Studies investigating the associations between lifestyle factors and bladder cancer outcomes are scarce and should be a research priority. In this Review, we outline global trends in bladder cancer incidence and mortality, and discuss the main risk factors influencing bladder cancer occurrence and outcomes. We then discuss the implications, challenges and opportunities of these epidemiological trends for public health and clinical practice.

Key points

  • The rising incidence of bladder cancer, a growing shortage of health-care professionals worldwide and limited financial resources underline the need to reduce the substantial burden of bladder cancer globally.

  • Awareness regarding risk factors for and symptoms of bladder cancer should be increased in society, particularly among both health-care professionals and high-risk groups.

  • Given the undisputed association between smoking and bladder cancer, further efforts focused on primary prevention should be undertaken, most importantly through greater implementation of tobacco control policies worldwide.

  • Less-invasive and cheaper approaches for the diagnosis of primary and recurrent bladder cancers in clinical practice are urgently needed.

  • Literature on the potential associations between lifestyle factors and bladder cancer outcomes is scarce. Given the observational data indicating beneficial effects of a healthy lifestyle on clinical outcomes in other cancer types, this aspect should be a priority for bladder cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Bladder wall and different stages of tumour invasion.
Fig. 2: Bladder cancer incidence worldwide in 2020.
Fig. 3: Summary of demographic characteristics that are relevant to bladder cancer incidence across countries worldwide.
Fig. 4: Bladder cancer mortality worldwide in 2020.
Fig. 5: Worldwide implementation of effective tobacco control measures.

Similar content being viewed by others

References

  1. Alanee, S. et al. Update of the International Consultation on Urological Diseases on bladder cancer 2018: non-urothelial cancers of the urinary bladder. World J. Urol. 37, 107–114 (2019).

    Article  PubMed  Google Scholar 

  2. Cancer Genome Atlas Research Network.Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  Google Scholar 

  3. van Rhijn, B. W. G. et al. Prognostic value of the WHO1973 and WHO2004/2016 classification systems for grade in primary Ta/T1 non-muscle-invasive bladder cancer: a multicenter European Association of Urology Non-muscle-invasive Bladder Cancer Guidelines Panel Study. Eur. Urol. Oncol. 4, 182–191 (2021).

    Article  PubMed  Google Scholar 

  4. Cambier, S. et al. EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1-3 years of maintenance Bacillus Calmette-Guérin. Eur. Urol. 69, 60–69 (2016).

    Article  PubMed  Google Scholar 

  5. Oszczudlowski, M. & Dobruch, J. Prediction of progression to muscle-invasive disease in patients with high-risk bladder cancer. Transl. Androl. Urol. 7, 749–751 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. D'Andrea, D. et al. Accurate prediction of progression to muscle-invasive disease in patients with pT1G3 bladder cancer: a clinical decision-making tool. Urol. Oncol. 36, 239.e1–239.e7 (2018).

    Article  PubMed  Google Scholar 

  7. van den Bosch, S. & Witjes, J. A. Long-term cancer-specific survival in patients with high-risk, non-muscle-invasive bladder cancer and tumour progression: a systematic review. Eur. Urol. 60, 493–500 (2011).

    Article  PubMed  Google Scholar 

  8. Vlaming, M., Kiemeney, L. & van der Heijden, A. G. Survival after radical cystectomy: progressive versus de novo muscle invasive bladder cancer. Cancer Treat. Res. Commun. 25, 100264 (2020).

    Article  PubMed  Google Scholar 

  9. Sylvester, R. J. et al. European Association of Urology (EAU) Prognostic Factor Risk Groups for non-muscle-invasive bladder cancer (NMIBC) incorporating the WHO 2004/2016 and WHO 1973 classification systems for grade: an update from the EAU NMIBC guidelines panel. Eur. Urol. 79, 480–488 (2021).

    Article  PubMed  Google Scholar 

  10. Martini, A. et al. The natural history of untreated muscle-invasive bladder cancer. BJU Int. 125, 270–275 (2020).

    Article  PubMed  Google Scholar 

  11. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  12. Mossanen, M. & Gore, J. L. The burden of bladder cancer care: direct and indirect costs. Curr. Opin. Urol. 24, 487–491 (2014).

    Article  PubMed  Google Scholar 

  13. Leal, J., Luengo-Fernandez, R., Sullivan, R. & Witjes, J. A. Economic burden of bladder cancer across the European Union. Eur. Urol. 69, 438–447 (2016).

    Article  PubMed  Google Scholar 

  14. Laaksonen, M. A. et al. The future burden of kidney and bladder cancers preventable by behavior modification in Australia: a pooled cohort study. Int. J. Cancer 146, 874–883 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Ferlay, J. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144, 1941–1953 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. International Agency for Research on Cancer. Cancer today. IARC https://gco.iarc.fr/today (2020).

  17. Antoni, S. et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur. Urol. 71, 96–108 (2017).

    Article  PubMed  Google Scholar 

  18. Richters, A., Aben, K. K. & Kiemeney, L. A. The global burden of urinary bladder cancer: an update. World J. Urol. 38, 1895–1904 (2020).

    Article  PubMed  Google Scholar 

  19. Islami, F. et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin. 68, 31–54 (2018).

    Article  PubMed  Google Scholar 

  20. US Census Bureau. International database: world population estimates and projections. US Census Bureau https://www.census.gov/programs-surveys/international-programs/about/idb.html (2021).

  21. Reitsma, M. B. et al. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet 389, 1885–1906 (2017).

    Article  Google Scholar 

  22. Ince Yenilmez, M. Economic and social consequences of population aging the dilemmas and opportunities in the twenty-first century. Appl. Res. Qual. Life 10, 735–752 (2015).

    Article  Google Scholar 

  23. Szabo, S. et al. Health workforce demography: a framework to improve understanding of the health workforce and support achievement of the Sustainable Development Goals. Hum. Resour. Health 18, 7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chhaya, S. et al. Role of perioperative immune checkpoint inhibitors in muscle invasive bladder cancer. Oncol. Ther. 11, 49–64 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ward Grados, D. F., Ahmadi, H., Griffith, T. S. & Warlick, C. A. Immunotherapy for bladder cancer: latest advances and ongoing clinical trials. Immunol. Invest. 51, 2226–2251 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Necchi, A. et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J. Clin. Oncol. 36, 3353–3360 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. van Dorp, J. et al. High- or low-dose preoperative ipilimumab plus nivolumab in stage III urothelial cancer: the phase 1B NABUCCO trial. Nat. Med. https://doi.org/10.1038/s41591-022-02199-y (2023).

    Article  PubMed  Google Scholar 

  28. Kantor, A. F., Hartge, P., Hoover, R. N. & Fraumeni, J. F. Jr Epidemiological characteristics of squamous cell carcinoma and adenocarcinoma of the bladder. Cancer Res. 48, 3853–3855 (1988).

    CAS  PubMed  Google Scholar 

  29. Vineis, P. et al. DNA adducts in urothelial cells: relationship with biomarkers of exposure to arylamines and polycyclic aromatic hydrocarbons from tobacco smoke. Int. J. Cancer 65, 314–316 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Bellamri, M. et al. DNA damage and oxidative stress of tobacco smoke condensate in human bladder epithelial cells. Chem. Res. Toxicol. 35, 1863–1880 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, H. W. et al. Acrolein- and 4-aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells. Oncotarget 5, 3526–3540 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cumberbatch, M. G., Rota, M., Catto, J. W. & La Vecchia, C. The role of tobacco smoke in bladder and kidney carcinogenesis: a comparison of exposures and meta-analysis of incidence and mortality risks. Eur. Urol. 70, 458–466 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Kogevinas M., Figueroa, J., Garcia-Closas M. & Mucci, L. in Textbook of Cancer Epidemiology 3rd edn (eds Adami, H. O. et al.) 543–570 (Oxford Univ. Press, 2018).

  34. Fortuny, J. et al. Tobacco, occupation and non‐transitional‐cell carcinoma of the bladder: an international case‐control study. Int. J. Cancer 80, 44–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Kogevinas, M., Garcia-Closas, M. & Trichopoulos D. in Textbook of Cancer Epidemiology 2nd edn (eds Adami, H.-O. et al.) 573–596 (Oxford Univ. Press, 2008).

  36. van Osch, F. H., Jochems, S. H., van Schooten, F. J., Bryan, R. T. & Zeegers, M. P. Quantified relations between exposure to tobacco smoking and bladder cancer risk: a meta-analysis of 89 observational studies. Int. J. Epidemiol. 45, 857–870 (2016).

    Article  PubMed  Google Scholar 

  37. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco Smoke and Involuntary Smoking (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 83) (IARC, 2004).

  38. Freedman, N. D., Silverman, D. T., Hollenbeck, A. R., Schatzkin, A. & Abnet, C. C. Association between smoking and risk of bladder cancer among men and women. JAMA 306, 737–745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bjurlin, M. A. et al. Carcinogen biomarkers in the urine of electronic cigarette users and implications for the development of bladder cancer: a systematic review. Eur. Urol. Oncol. 4, 766–783 (2021).

    Article  PubMed  Google Scholar 

  40. Christoforidou, E. P. et al. Bladder cancer and arsenic through drinking water: a systematic review of epidemiologic evidence. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 48, 1764–1775 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Carattino, M. D. et al. Bladder filling and voiding affect umbrella cell tight junction organization and function. Am. J. Physiol. Renal Physiol. 305, F1158–F1168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwan, M. L., Garren, B., Nielsen, M. E. & Tang, L. Lifestyle and nutritional modifiable factors in the prevention and treatment of bladder cancer. Urol. Oncol. 37, 380–386 (2019).

    Article  PubMed  Google Scholar 

  43. Al-Zalabani, A. H., Stewart, K. F., Wesselius, A., Schols, A. M. & Zeegers, M. P. Modifiable risk factors for the prevention of bladder cancer: a systematic review of meta-analyses. Eur. J. Epidemiol. 31, 811–851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vrieling, A. Lifestyle and bladder cancer prevention: no consistent evidence from cohort studies. Eur. J. Epidemiol. 32, 1033–1035 (2017).

    Article  PubMed  Google Scholar 

  45. World Cancer Research Fund. Continuous Update Project Expert Report 2018. Diet, nutrition, physical activity and bladder cancer. WCRF, https://www.wcrf.org/wp-content/uploads/2021/02/Summary-of-Third-Expert-Report-2018.pdf (2018).

  46. Sun, J. W. et al. Obesity and risk of bladder cancer: a dose-response meta-analysis of 15 cohort studies. PLoS ONE 10, e0119313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Keimling, M., Behrens, G., Schmid, D., Jochem, C. & Leitzmann, M. F. The association between physical activity and bladder cancer: systematic review and meta-analysis. Br. J. Cancer 110, 1862–1870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krabbe, L. M., Svatek, R. S., Shariat, S. F., Messing, E. & Lotan, Y. Bladder cancer risk: use of the PLCO and NLST to identify a suitable screening cohort. Urol. Oncol. 33, 65.e19–65.e25 (2015).

    Article  PubMed  Google Scholar 

  49. Hartge, P. et al. Unexplained excess risk of bladder cancer in men. J. Natl Cancer Inst. 82, 1636–1640 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Lam, C. M., Li, Z., Theodorescu, D. & Li, X. Mechanism of sex differences in bladder cancer: evident and elusive sex-biasing factors. Bladder Cancer 8, 241–254 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y. Understanding the gender disparity in bladder cancer risk: the impact of sex hormones and liver on bladder susceptibility to carcinogens. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 31, 287–304 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Buckley, D. B. & Klaassen, C. D. Tissue-and gender-specific mRNA expression of UDP-glucuronosyltransferases (UGTs) in mice. Drug Metab. Dispos. 35, 121–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Dobruch, J. et al. Gender and bladder cancer: a collaborative review of etiology, biology, and outcomes. Eur. Urol. 69, 300–310 (2016).

    Article  PubMed  Google Scholar 

  54. Daugherty, S. E. et al. Reproductive factors and menopausal hormone therapy and bladder cancer risk in the NIH‐AARP Diet and Health Study. Int. J. Cancer 133, 462–472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fajkovic, H. et al. Impact of gender on bladder cancer incidence, staging, and prognosis. World J. Urol. 29, 457–463 (2011).

    Article  PubMed  Google Scholar 

  56. Richters, A. et al. Bladder cancer survival: women only fare worse in the first two years after diagnosis. Urol. Oncol. 37, 853–861 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Garg, T. et al. Gender disparities in hematuria evaluation and bladder cancer diagnosis: a population based analysis. J. Urol. 192, 1072–1077 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cohn, J. A., Vekhter, B., Lyttle, C., Steinberg, G. D. & Large, M. C. Sex disparities in diagnosis of bladder cancer after initial presentation with hematuria: a nationwide claims‐based investigation. Cancer 120, 555–561 (2014).

    Article  PubMed  Google Scholar 

  59. Johnson, E. K., Daignault, S., Zhang, Y. & Lee, C. T. Patterns of hematuria referral to urologists: does a gender disparity exist? Urology 72, 498–502 (2008).

    Article  PubMed  Google Scholar 

  60. Buteau, A. et al. What is evaluation of hematuria by primary care physicians? Use of electronic medical records to assess practice patterns with intermediate follow-up. Urol. Oncol. 32, 128–134 (2014).

    Article  PubMed  Google Scholar 

  61. Volikova, A. I. et al. Structural, biomechanical and hemodynamic assessment of the bladder wall in healthy subjects. Res. Rep. Urol. 11, 233–245 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Scosyrev, E., Noyes, K., Feng, C. & Messing, E. Sex and racial differences in bladder cancer presentation and mortality in the US. Cancer 115, 68–74 (2009).

    Article  PubMed  Google Scholar 

  63. Richters, A., Leliveld, A. M., Goossens-Laan, C. A., Aben, K. K. & Özdemir, B. C. Sex differences in treatment patterns for non-advanced muscle-invasive bladder cancer: a descriptive analysis of 3484 patients of the Netherlands Cancer Registry. World J. Urol. 40, 2275–2281 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Özdemir, B. C., Csajka, C., Dotto, G.-P. & Wagner, A. D. Sex differences in efficacy and toxicity of systemic treatments: an undervalued issue in the era of precision oncology. J. Clin. Oncol. 36, 2680–2683 (2018).

    Article  PubMed  Google Scholar 

  65. Aben, K. K. et al. Absence of karyotype abnormalities in patients with familial urothelial cell carcinoma. Urology 57, 266–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Marees, T. et al. Risk of second malignancies in survivors of retinoblastoma: more than 40 years of follow-up. J. Natl Cancer Inst. 100, 1771–1779 (2008).

    Article  PubMed  Google Scholar 

  67. Kleinerman, R. A. et al. Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: an extended follow-up. J. Clin. Oncol. 23, 2272–2279 (2005).

    Article  PubMed  Google Scholar 

  68. Fletcher, O. et al. Lifetime risks of common cancers among retinoblastoma survivors. J. Natl Cancer Inst. 96, 357–363 (2004).

    Article  PubMed  Google Scholar 

  69. Schonfeld, S. J. et al. Long-term risk of subsequent cancer incidence among hereditary and nonhereditary retinoblastoma survivors. Br. J. Cancer 124, 1312–1319 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gripp, K. W. Tumor predisposition in Costello syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 137c, 72–77 (2005).

    Article  PubMed  Google Scholar 

  71. van der Post, R. S. et al. Risk of urothelial bladder cancer in Lynch syndrome is increased, in particular among MSH2 mutation carriers. J. Med. Genet. 47, 464–470 (2010).

    Article  PubMed  Google Scholar 

  72. Skeldon, S. C. et al. Patients with Lynch syndrome mismatch repair gene mutations are at higher risk for not only upper tract urothelial cancer but also bladder cancer. Eur. Urol. 63, 379–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Pietzak, E. J. et al. Inherited germline cancer susceptibility gene variants in individuals with non-muscle-invasive bladder cancer. Clin. Cancer Res. 28, 4267–4277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yap, T. A. et al. Prevalence of germline findings among tumors from cancer types lacking hereditary testing guidelines. JAMA Netw. Open 5, e2213070 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zeng, C. et al. Association of pathogenic variants in hereditary cancer genes with multiple diseases. JAMA Oncol. 8, 835–844 (2022).

    Article  PubMed  Google Scholar 

  76. Vosoughi, A. et al. Common germline-somatic variant interactions in advanced urothelial cancer. Nat. Commun. 11, 6195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nassar, A. H. et al. Prevalence of pathogenic germline cancer risk variants in high-risk urothelial carcinoma. Genet. Med. 22, 709–718 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Carlo, M. I. et al. Cancer susceptibility mutations in patients with urothelial malignancies. J. Clin. Oncol. 38, 406–414 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Aben, K. K. et al. Familial aggregation of urothelial cell carcinoma. Int. J. Cancer 98, 274–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. de Maturana, E. L. et al. Bladder cancer genetic susceptibility. A systematic review. Bladder Cancer 4, 215–226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Figueroa, J. D. et al. Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry. Hum. Mol. Genet. 25, 1203–1214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marcus, P. M. et al. Cigarette smoking, N-acetyltransferase 2 acetylation status, and bladder cancer risk: a case-series meta-analysis of a gene-environment interaction. Cancer Epidemiol. Biomark. Prev. 9, 461–467 (2000).

    CAS  Google Scholar 

  83. Figueroa, J. D. et al. Genome-wide interaction study of smoking and bladder cancer risk. Carcinogenesis 35, 1737–1744 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Loomis, D., Guha, N., Hall, A. L. & Straif, K. Identifying occupational carcinogens: an update from the IARC Monographs. Occup. Environ. Med. 75, 593–603 (2018).

    Article  PubMed  Google Scholar 

  85. Cumberbatch, M. G. K. et al. Epidemiology of bladder cancer: a systematic review and contemporary update of risk factors in 2018. Eur. Urol. 74, 784–795 (2018).

    Article  PubMed  Google Scholar 

  86. Baris, D. et al. Elevated bladder cancer in northern New England: the role of drinking water and arsenic. J. Natl Cancer Inst. 108, djw099 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nigra, A. E. et al. Inequalities in public water arsenic concentrations in counties and community water systems across the United States, 2006–2011. Environ. Health Perspect. 128, 127001 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kurttio, P., Pukkala, E., Kahelin, H., Auvinen, A. & Pekkanen, J. Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ. Health Perspect. 107, 705–710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Villanueva, C. M. et al. Global assessment of chemical quality of drinking water: the case of trihalomethanes. Water Res. 230, 119568 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Villanueva, C. M., Fernandez, F., Malats, N., Grimalt, J. O. & Kogevinas, M. Meta-analysis of studies on individual consumption of chlorinated drinking water and bladder cancer. J. Epidemiol. Community Health 57, 166–173 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Diana, M., Felipe-Sotelo, M. & Bond, T. Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer: a review. Water Res. 162, 492–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. European Environment Agency. Beating cancer – the role of Europe’s environment. European Envrionment Agency https://www.eea.europa.eu/publications/environmental-burden-of-cancer/beating-cancer-the-role-of-europes (2023).

  93. Williams, S. B. et al. Proximity to oil refineries and risk of cancer: a population-based analysis. JNCI Cancer Spectr. 4, pkaa088 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pedersen, M. et al. Is there an association between ambient air pollution and bladder cancer incidence? Analysis of 15 European cohorts. Eur. Urol. Focus. 4, 113–120 (2018).

    Article  PubMed  Google Scholar 

  95. Lackey, E. K. & Horrall, S. Schistosomiasis (StatPearls, 2022).

  96. Salem, S., Mitchell, R. E., El‐Alim El‐Dorey, A., Smith, J. A. & Barocas, D. A. Successful control of schistosomiasis and the changing epidemiology of bladder cancer in Egypt. BJU Int. 107, 206–211 (2011).

    Article  PubMed  Google Scholar 

  97. Bedwani, R. et al. Schistosomiasis and the risk of bladder cancer in Alexandria, Egypt. Br. J. Cancer 77, 1186–1189 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aula, O. P., McManus, D. P., Jones, M. K. & Gordon, C. A. Schistosomiasis with a focus on Africa. Trop. Med. Infect. Dis. 6, 109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhu, Z. et al. Risk of bladder cancer in patients with diabetes mellitus: an updated meta-analysis of 36 observational studies. BMC Cancer 13, 310 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tuccori, M. et al. Pioglitazone use and risk of bladder cancer: population based cohort study. BMJ 352, i1541 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Groah, S. L. et al. Excess risk of bladder cancer in spinal cord injury: evidence for an association between indwelling catheter use and bladder cancer. Arch. Phys. Med. Rehabil. 83, 346–351 (2002).

    Article  PubMed  Google Scholar 

  102. American College of Surgeons. Best Practice Guidelines: Spine Injury (American College of Surgeons, 2022).

  103. Welk, B., McIntyre, A., Teasell, R., Potter, P. & Loh, E. Bladder cancer in individuals with spinal cord injuries. Spinal Cord. 51, 516–521 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Yu, Z. et al. The risk of bladder cancer in patients with urinary calculi: a meta-analysis. Urolithiasis 46, 573–579 (2018).

    Article  PubMed  Google Scholar 

  105. IARC. Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. IARC Monogr. Eval. Carcinog. Risks Hum. Suppl. 7, 1–440 (1987).

    Google Scholar 

  106. Laursen, B. Cancer of the bladder in patients treated with chlornaphazine. Br. Med. J. 3, 684–685 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thiede, T. & Christensen, B. C. Bladder tumors induced by chlornaphazine treatment [Danish]. Ugeskr. Laeger 137, 661–666 (1975).

    CAS  PubMed  Google Scholar 

  108. Fortuny, J. et al. Analgesic and anti-inflammatory drug use and risk of bladder cancer: a population based case control study. BMC Urol. 7, 13 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  109. McCredie, M., Stewart, J. H., Ford, J. M. & MacLennan, R. A. Phenacetin-containing analgesics and cancer of the bladder or renal pelvis in women. Br. J. Urol. 55, 220–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  110. Antoni, S. et al. The ban on phenacetin is associated with changes in the incidence trends of upper-urinary tract cancers in Australia. Aust. N. Z. J. Public Health 38, 455–458 (2014).

    Article  PubMed  Google Scholar 

  111. Chou, W. H. et al. Cyclophosphamide-associated bladder cancers and considerations for survivorship care: a systematic review. Urol. Oncol. 39, 678–685 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Sountoulides, P., Koletsas, N., Kikidakis, D., Paschalidis, K. & Sofikitis, N. Secondary malignancies following radiotherapy for prostate cancer. Ther. Adv. Urol. 2, 119–125 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jahreiß, M.-C. et al. The risk of second primary cancers in prostate cancer survivors treated in the modern radiotherapy era. Front. Oncol. 10, 605119 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Murray, L., Henry, A., Hoskin, P., Siebert, F.-A. & Venselaar, J. PROBATE group of GEC ESTRO Second primary cancers after radiation for prostate cancer: a systematic review of the clinical data and impact of treatment technique. Radiother. Oncol. 110, 213–228 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Alguacil, J. et al. Urinary pH, cigarette smoking and bladder cancer risk. Carcinogenesis 32, 843–847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rink, M. et al. Smoking reduces the efficacy of intravesical bacillus Calmette-Guerin immunotherapy in non-muscle-invasive bladder cancer. Eur. Urol. 62, 1204–1206 (2012).

    Article  PubMed  Google Scholar 

  117. Sfakianos, J. P., Shariat, S. F., Favaretto, R. L., Rioja, J. & Herr, H. W. Impact of smoking on outcomes after intravesical bacillus Calmette-Guerin therapy for urothelial carcinoma not invading muscle of the bladder. BJU Int. 108, 526–530 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Cacciamani, G. E. et al. Association between smoking exposure, neoadjuvant chemotherapy response and survival outcomes following radical cystectomy: systematic review and meta-analysis. J. Urol. 204, 649–660 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Rink, M. et al. Impact of smoking and smoking cessation on outcomes in bladder cancer patients treated with radical cystectomy. Eur. Urol. 64, 456–464 (2013).

    Article  PubMed  Google Scholar 

  120. Haeuser, L. et al. The impact of smoking on radical cystectomy complications increases in elderly patients. Cancer 127, 1387–1394 (2021).

    Article  PubMed  Google Scholar 

  121. Lauridsen, S. V. et al. Effect of a smoking and alcohol cessation intervention initiated shortly before radical cystectomy – the STOP-OP study: a randomised clinical trial. Eur. Urol. Focus 8, 1650–1658 (2022).

    Article  PubMed  Google Scholar 

  122. van Osch, F. H., Jochems, S. H., van Schooten, F. J., Bryan, R. T. & Zeegers, M. P. Significant role of lifetime cigarette smoking in worsening bladder cancer and upper tract urothelial carcinoma prognosis: a meta-analysis. J. Urol. 195, 872–879 (2016).

    Article  PubMed  Google Scholar 

  123. Hou, L. et al. Association of smoking status with prognosis in bladder cancer: a meta-analysis. Oncotarget 8, 1278–1289 (2017).

    Article  PubMed  Google Scholar 

  124. Fleshner, N. et al. Influence of smoking status on the disease-related outcomes of patients with tobacco-associated superficial transitional cell carcinoma of the bladder. Cancer 86, 2337–2345 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, C. H. et al. Stopping smoking might reduce tumour recurrence in nonmuscle-invasive bladder cancer. BJU Int. 100, 281–286 (2007).

    Article  PubMed  Google Scholar 

  126. Lu, Y. & Tao, J. Diabetes mellitus and obesity as risk factors for bladder cancer prognosis: a systematic review and meta-analysis. Front. Endocrinol. 12, 699732 (2021).

    Article  Google Scholar 

  127. Hu, X. et al. The prognostic value of sarcopenia in patients with surgically treated urothelial carcinoma: a systematic review and meta-analysis. Eur. J. Surg. Oncol. 45, 747–754 (2019).

    Article  PubMed  Google Scholar 

  128. Tobert, C. M. et al. Emerging impact of malnutrition on surgical patients: literature review and potential implications for cystectomy in bladder cancer. J. Urol. 198, 511–519 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Alam, S. M. et al. Optimizing nutritional status in patients undergoing radical cystectomy: a systematic scoping review. Bladder Cancer 7, 449–461 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hamilton-Reeves, J. et al. A randomized phase III double-blind clinical trial (S1600) evaluating the effect of immune-enhancing nutrition on radical cystectomy outcomes [abstract]. J. Clin. Oncol. 36 (Suppl. 6), TPS529 (2018).

    Article  Google Scholar 

  131. Westhoff, E. et al. Body mass index, diet-related factors, and bladder cancer prognosis: a systematic review and meta-analysis. Bladder Cancer 4, 91–112 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zuniga, K. B. et al. Lifestyle and non-muscle invasive bladder cancer recurrence, progression, and mortality: available research and future directions. Bladder Cancer 6, 9–23 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Michalek, A. M., Cummings, K. M. & Phelan, J. Vitamin A and tumor recurrence in bladder cancer. Nutr. Cancer 9, 143–146 (1987).

    Article  CAS  PubMed  Google Scholar 

  134. Donat, S. M., Bayuga, S., Herr, H. W. & Berwick, M. Fluid intake and the risk of tumor recurrence in patients with superficial bladder cancer. J. Urol. 170, 1777–1780 (2003).

    Article  PubMed  Google Scholar 

  135. Jochems, S. H. J. et al. Total fluid intake and the risk of recurrence in patients with non-muscle invasive bladder cancer: a prospective cohort study. Bladder Cancer 4, 303–310 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wakai, K., Ohno, Y., Obata, K. & Aoki, K. Prognostic significance of selected lifestyle factors in urinary bladder cancer. Jpn. J. Cancer Res. 84, 1223–1229 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tang, L. et al. Intake of cruciferous vegetables modifies bladder cancer survival. Cancer Epidemiol. Biomark. Prev. 19, 1806–1811 (2010).

    Article  CAS  Google Scholar 

  138. Jochems, S. H. J. et al. Fruit and vegetable intake and the risk of recurrence in patients with non-muscle invasive bladder cancer: a prospective cohort study. Cancer Causes Control. 29, 573–579 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Westhoff, E. et al. Dietary patterns and risk of recurrence and progression in non-muscle-invasive bladder cancer. Int. J. Cancer 142, 1797–1804 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Benhamou, S. et al. A prospective multicenter study on bladder cancer: the COBLAnCE cohort. BMC Cancer 16, 837 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. de Goeij, L. et al. The UroLife study: protocol for a Dutch prospective cohort on lifestyle habits in relation to non-muscle-invasive bladder cancer prognosis and health-related quality of life. BMJ Open 9, e030396 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kwan, M. L. et al. The Be-Well Study: a prospective cohort study of lifestyle and genetic factors to reduce the risk of recurrence and progression of non-muscle-invasive bladder cancer. Cancer Causes Control. 30, 187–193 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Jensen, B. T., Lauridsen, S. V. & Jensen, J. B. Prehabilitation for major abdominal urologic oncology surgery. Curr. Opin. Urol. 28, 243–250 (2018).

    Article  PubMed  Google Scholar 

  144. Rammant, E. et al. Understanding physical activity behavior in patients with bladder cancer before and after radical cystectomy: a qualitative interview study. Clin. Rehabil. 33, 750–761 (2019).

    Article  PubMed  Google Scholar 

  145. Arthuso, F. Z., Fairey, A. S., Boule, N. G. & Courneya, K. S. Bladder cancer and exercise training during intravesical therapy-the BRAVE trial: a study protocol for a prospective, single-centre, phase II randomised controlled trial. BMJ Open 11, e055782 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bessa, A. et al. Is there a role for physical activity interventions in the treatment pathway of bladder cancer? A scoping review of the literature. BMJ Open Sport. Exerc. Med. 7, e000951 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Minnella, E. M. et al. Multimodal prehabilitation to enhance functional capacity following radical cystectomy: a randomized controlled trial. Eur. Urol. Focus. 7, 132–138 (2021).

    Article  PubMed  Google Scholar 

  148. World Health Organization. WHO Framework Convention on Tobacco Control (WHO, 2003).

  149. World Health Organization. WHO Report on the Global Tobacco Epidemic, 2021: Addressing New and Emerging Products (WHO, 2021).

  150. Federal Trade Commission. Federal Trade Commission Cigarette Report for 2019 (FTC, 2021).

  151. Dai, X., Gakidou, E. & Lopez, A. D. Evolution of the global smoking epidemic over the past half century: strengthening the evidence base for policy action. Tob. Control. 31, 129–137 (2022).

    Article  PubMed  Google Scholar 

  152. Feirman, S. P. et al. Computational models used to assess us tobacco control policies. Nicotine Tob. Res. 19, 1257–1267 (2017).

    Article  PubMed  Google Scholar 

  153. Gilbert, A. &, Cornuz, J. Which are the Most Effective and Cost-effective Interventions for Tobacco Control? (WHO, 2003).

  154. Flor, L. S., Reitsma, M. B., Gupta, V., Ng, M. & Gakidou, E. The effects of tobacco control policies on global smoking prevalence. Nat. Med. 27, 239–243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cumberbatch, M. G., Cox, A., Teare, D. & Catto, J. W. Contemporary occupational carcinogen exposure and bladder cancer: a systematic review and meta-analysis. JAMA Oncol. 1, 1282–1290 (2015).

    Article  PubMed  Google Scholar 

  156. European Agency for Safety and Health at Work. Directive 2004/37/EC – carcinogens, mutagens or reprotoxic substances at work (European Commission, 2004).

  157. Babjuk, M. et al. European Association of Urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur. Urol. 81, 75–94 (2022).

    Article  PubMed  Google Scholar 

  158. Soukup, V. et al. Follow-up after surgical treatment of bladder cancer: a critical analysis of the literature. Eur. Urol. 62, 290–302 (2012).

    Article  PubMed  Google Scholar 

  159. Petrelli, F., Giannatempo, P., Maccagnano, C., Contieri, R. & Hurle, R. Active surveillance for non-muscle invasive bladder cancer: a systematic review and pooled-analysis. Cancer Treat. Res. Commun. 27, 100369 (2021).

    Article  PubMed  Google Scholar 

  160. van Valenberg, F. J. P. et al. Prospective validation of an mRNA-based urine test for surveillance of patients with bladder cancer. Eur. Urol. 75, 853–860 (2019).

    Article  PubMed  Google Scholar 

  161. Cancel-Tassin, G. et al. Assessment of Xpert bladder cancer monitor test performance for the detection of recurrence during non-muscle invasive bladder cancer follow-up. World J. Urol. 39, 3329–3335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Witjes, J. A. et al. Performance of the bladder EpiCheck™ methylation test for patients under surveillance for non-muscle-invasive bladder cancer: results of a multicenter, prospective, blinded clinical trial. Eur. Urol. Oncol. 1, 307–313 (2018).

    Article  PubMed  Google Scholar 

  163. Kausch, I. et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur. Urol. 57, 595–606 (2010).

    Article  PubMed  Google Scholar 

  164. Mowatt, G. et al. Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: systematic review and meta-analysis. Int. J. Technol. Assess. Health Care 27, 3–10 (2011).

    Article  PubMed  Google Scholar 

  165. Veeratterapillay, R. et al. Time to turn on the blue lights: a systematic review and meta-analysis of photodynamic diagnosis for bladder cancer. Eur. Urol. Open. Sci. 31, 17–27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Williams, S. B., Gavaghan, M. B., Fernandez, A., Daneshmand, S. & Kamat, A. M. Macro and microeconomics of blue light cystoscopy with CYSVIEW® in non-muscle invasive bladder cancer. Urol. Oncol. 40, 10.e7–10.e12 (2022).

    Article  PubMed  Google Scholar 

  167. Burger, M. et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur. Urol. 64, 846–854 (2013).

    Article  PubMed  Google Scholar 

  168. Russo, G. I. et al. Performance of narrow band imaging (NBI) and photodynamic diagnosis (PDD) fluorescence imaging compared to white light cystoscopy (WLC) in detecting non-muscle invasive bladder cancer: a systematic review and lesion-level diagnostic meta-analysis. Cancers 13, 4378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wilson, J. M. G. & Jungner, G. Principles and Practice of Screening for Disease (WHO, 1966).

  170. World Health Organization. A Short Guide to Cancer Screening: Increase Effectiveness, Maximize Benefits and Minimize Harm (WHO, 2022).

  171. Messing, E. M. et al. Long-term outcome of hematuria home screening for bladder cancer in men. Cancer 107, 2173–2179 (2006).

    Article  PubMed  Google Scholar 

  172. Madeb, R. & Messing, E. M. Long-term outcome of home dipstick testing for hematuria. World J. Urol. 26, 19–24 (2008).

    Article  PubMed  Google Scholar 

  173. Roobol, M. J., Bangma, C. H., el Bouazzaoui, S., Franken-Raab, C. G. & Zwarthoff, E. C. Feasibility study of screening for bladder cancer with urinary molecular markers (the BLU-P project). Urol. Oncol. 28, 686–690 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Bangma, C. H. et al. Outcomes of a bladder cancer screening program using home hematuria testing and molecular markers. Eur. Urol. 64, 41–47 (2013).

    Article  PubMed  Google Scholar 

  175. Steiner, H. et al. Early results of bladder-cancer screening in a high-risk population of heavy smokers. BJU Int. 102, 291–296 (2008).

    Article  PubMed  Google Scholar 

  176. Lotan, Y., Capitanio, U., Shariat, S. F., Hutterer, G. C. & Karakiewicz, P. I. Impact of clinical factors, including a point-of-care nuclear matrix protein-22 assay and cytology, on bladder cancer detection. BJU Int. 103, 1368–1374 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Starke, N., Singla, N., Haddad, A. & Lotan, Y. Long-term outcomes in a high-risk bladder cancer screening cohort. BJU Int. 117, 611–617 (2016).

    Article  PubMed  Google Scholar 

  178. Lotan, Y. et al. Bladder cancer screening in a high risk asymptomatic population using a point of care urine based protein tumor marker. J. Urol. 182, 52–57 (2009).

    Article  PubMed  Google Scholar 

  179. Ward, E. et al. Screening workers exposed to 4,4′-methylenebis(2-chloroaniline) for bladder cancer by cystoscopy. J. Occup. Med. 32, 865–868 (1990).

    Article  CAS  PubMed  Google Scholar 

  180. Chen, H. I. et al. Bladder cancer screening and monitoring of 4,4′-methylenebis(2-chloroaniline) exposure among workers in Taiwan. Urology 66, 305–310 (2005).

    Article  PubMed  Google Scholar 

  181. Giberti, C., Gallo, F., Schenone, M. & Genova, A. Early results of urothelial carcinoma screening in a risk population of coke workers: urothelial carcinoma among coke workers. Biomed. Environ. Sci. 23, 300–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Marsh, G. M. & Cassidy, L. D. The Drake Health Registry Study: findings from fifteen years of continuous bladder cancer screening. Am. J. Ind. Med. 43, 142–148 (2003).

    Article  PubMed  Google Scholar 

  183. Pesch, B. et al. Screening for bladder cancer with urinary tumor markers in chemical workers with exposure to aromatic amines. Int. Arch. Occup. Environ. Health 87, 715–724 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Sbizzera, M., Descotes, F., Arber, T., Neuville, P. & Ruffion, A. Bladder cancer detection in patients with neurogenic bladder: are cystoscopy and cytology effective, and are biomarkers pertinent as future diagnostic tools? A scoping review. World J. Urol. 40, 1897–1913 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. US Preventive Services Task Force Summaries for patients: screening for bladder cancer: recommendations from the U.S. Preventive Services Task Force. Ann. Intern. Med. 155, 246–251 (2011).

    Article  Google Scholar 

  186. Chang, S. S. et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J. Urol. 196, 1021–1029 (2016).

    Article  PubMed  Google Scholar 

  187. Larré, S. et al. Screening for bladder cancer: rationale, limitations, whom to target, and perspectives. Eur. Urol. 63, 1049–1058 (2013).

    Article  PubMed  Google Scholar 

  188. Grossman, H. B. et al. Detection of bladder cancer using a point-of-care proteomic assay. JAMA 293, 810–816 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Hill, A. B. The environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Knowles, M. A. & Hurst, C. D. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 15, 25–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. World Health Organization. WHO Global Report on Trends in Prevalence of Tobacco Smoking 2015 (WHO, 2015).

  192. World Health Organization. WHO Report on the Global Tobacco Epidemic, 2017: Monitoring Tobacco Use and Prevention Policies (WHO, 2017).

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Lambertus A. Kiemeney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks P. Black, Y. Lotan, C. F. Ng and J. Wong for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Directive 2004/37/EC: https://osha.europa.eu/en/legislation/directive/directive-200437ec-carcinogens-or-mutagens-work

Directive 89/391/EEC: https://osha.europa.eu/en/legislation/directives/the-osh-framework-directive/1

Directive 98/24/EC: https://osha.europa.eu/en/legislation/directives/75

GLOBOCAN 2020: https://gco.iarc.fr/today/home

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Hoogstraten, L.M.C., Vrieling, A., van der Heijden, A.G. et al. Global trends in the epidemiology of bladder cancer: challenges for public health and clinical practice. Nat Rev Clin Oncol 20, 287–304 (2023). https://doi.org/10.1038/s41571-023-00744-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00744-3

  • Springer Nature Limited

This article is cited by

Navigation