Skip to main content
Log in

Omniphobic liquid-like surfaces

  • Review Article
  • Published:

From Nature Reviews Chemistry

View current issue Sign up to alerts

A Publisher Correction to this article was published on 02 October 2023

This article has been updated

Abstract

Liquid-repellent surfaces, especially smooth solid surfaces with covalently grafted flexible polymer brushes or alkyl monolayers, are the focus of an expanding research area. Surface-tethered flexible species are highly mobile at room temperature, giving solid surfaces a unique liquid-like quality and unprecedented dynamical repellency towards various liquids regardless of their surface tension. Omniphobic liquid-like surfaces (LLSs) are a promising alternative to air-mediated superhydrophobic or superoleophobic surfaces and lubricant-mediated slippery surfaces, avoiding fabrication complexity and air/lubricant loss issues. More importantly, the liquid-like molecular layer controls many important interface properties, such as slip, friction and adhesion, which may enable novel functions and applications that are inaccessible with conventional solid coatings. In this Review, we introduce LLSs and their inherent dynamic omniphobic mechanisms. Particular emphasis is given to the fundamental principles of surface design and the consequences of the liquid-like nature for task-specific applications. We also provide an overview of the key challenges and opportunities for omniphobic LLSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Four types of liquid-repellent surfaces based on different design principles.
Fig. 2: Dynamics and thermodynamics of omniphobic liquid-like surfaces.
Fig. 3: Influential factors on chain mobility.
Fig. 4: Design of liquid-like monolayers and durable liquid-like coatings.
Fig. 5: Anti-liquid-adhesion, anti-bioadhesion and anti-solid-adhesion applications of smooth liquid-like surfaces.
Fig. 6: Applications of patterned LLSs and LLSs in porous materials.
Fig. 7: Perspective on future developments and remaining challenges in the field of LLSs.

Similar content being viewed by others

Change history

References

  1. Dhyani, A. et al. Design and applications of surfaces that control the accretion of matter. Science 373, eaba5010 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Kreder, M. J., Alvarenga, J., Kim, P. & Aizenberg, J. Design of anti-icing surfaces: smooth, textured or slippery? Nat. Rev. Mater. 1, 1–15 (2016).

    Article  Google Scholar 

  3. Lee, C. & Kim, C.-J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Phys. Rev. Lett. 106, 014502 (2011).

    Article  PubMed  Google Scholar 

  4. Chu, Z., Feng, Y. & Seeger, S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 54, 2328–2338 (2015).

    Article  CAS  Google Scholar 

  5. Wen, R., Xu, S., Ma, X., Lee, Y.-C. & Yang, R. Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer. Joule 2, 269–279 (2018).

    Article  CAS  Google Scholar 

  6. Liu, M., Wang, S.&Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017).

    Article  CAS  Google Scholar 

  7. Su, B., Tian, Y. & Jiang, L. Bioinspired interfaces with superwettability: from materials to chemistry. J. Am. Chem. Soc. 138, 1727–1748 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, S., Liu, K., Yao, X. & Jiang, L. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem. Rev. 115, 8230–8293 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Deng, X., Mammen, L., Butt, H.-J. & Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Yong, J., Chen, F., Yang, Q., Huo, J. & Hou, X. Superoleophobic surfaces. Chem. Soc. Rev. 46, 4168–4217 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Li, X.-M., Reinhoudt, D. & Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36, 1350–1368 (2007).

    Article  PubMed  Google Scholar 

  13. Tuteja, A. et al. Designing superoleophobic surfaces. Science 318, 1618–1622 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, T. & Kim, C.-J. Turning a surface superrepellent even to completely wetting liquids. Science 346, 1096–1100 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, M. et al. Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling. Nature 601, 568–572 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Lafuma, A. & Quéré, D. Superhydrophobic states. Nat. Mater. 2, 457–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, S. & Jiang, L. Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007).

    Article  CAS  Google Scholar 

  19. Xu, M., Sun, G. & Kim, C.-J. Infinite lifetime of underwater superhydrophobic states. Phys. Rev. Lett. 113, 136103 (2014).

    Article  PubMed  Google Scholar 

  20. Narhe, R. D. & Beysens, D. A. Nucleation and growth on a superhydrophobic grooved surface. Phys. Rev. Lett. 93, 076103 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Tian, X., Verho, T. & Ras, R. H. A. Moving superhydrophobic surfaces toward real-world applications. Science 352, 142–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, D. et al. Design of robust superhydrophobic surfaces. Nature 582, 55–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Nosonovsky, M. Slippery when wetted. Nature 477, 412–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, X., Wen, G. & Guo, Z. What are the design principles, from the choice of lubricants and structures to the preparation method, for a stable slippery lubricant-infused porous surface? Mater. Horiz. 7, 1697–1726 (2020).

    Article  CAS  Google Scholar 

  25. Peppou-Chapman, S., Hong, J. K., Waterhouse, A. & Neto, C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem. Soc. Rev. 49, 3688–3715 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Buddingh, J. V., Hozumi, A. & Liu, G. Liquid and liquid-like surfaces/coatings that readily slide fluids. Prog. Polym. Sci. 123, 101468 (2021). An introductory overview of slippery lubricant-infused surfaces and LLSs.

    Article  CAS  Google Scholar 

  27. Krumpfer, J. W. & McCarthy, T. J. Contact angle hysteresis: a different view and a trivial recipe for low hysteresis hydrophobic surfaces. Faraday Discuss. 146, 103–111 (2010). A pioneering example of PDMS-grafted surfaces with liquid-like nature and low hysteresis.

    Article  CAS  PubMed  Google Scholar 

  28. Wooh, S. & Vollmer, D. Silicone brushes: omniphobic surfaces with low sliding angles. Angew. Chem. Int. Ed. 55, 6822–6824 (2016).

    Article  CAS  Google Scholar 

  29. Gao, L. & McCarthy, T. J. Contact angle hysteresis explained. Langmuir 22, 6234–6237 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, W. et al. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples. Langmuir 15, 3395–3399 (1999). A pioneering example of a smooth alkylsilane monolayer with liquid-like nature and low hysteresis.

    Article  CAS  Google Scholar 

  31. Daniel, D. et al. Origins of extreme liquid repellency on structured, flat, and lubricated hydrophobic surfaces. Phys. Rev. Lett. 120, 244503 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Armstrong, S., McHale, G., Ledesma-Aguilar, R. & Wells, G. G. Pinning-free evaporation of sessile droplets of water from solid surfaces. Langmuir 35, 2989–2996 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Barrio-Zhang, H. et al. Contact-angle hysteresis and contact-line friction on slippery liquid-like surfaces. Langmuir 36, 15094–15101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang, L. et al. High-resolution patterned functionalization of slippery “liquid-like” brush surfaces via microdroplet-confined growth of multifunctional polydopamine arrays. Adv. Funct. Mater. 31, 2100447 (2021).

    Article  CAS  Google Scholar 

  35. Fan, Y. et al. Reducing the contact time of impacting water drops on superhydrophobic surfaces by liquid-like coatings. Chem. Eng. J. 448, 137638 (2022).

    Article  CAS  Google Scholar 

  36. Young, T. III An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805).

    Google Scholar 

  37. Huhtamäki, T., Tian, X., Korhonen, J. T. & Ras, R. H. A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 13, 1521–1538 (2018).

    Article  PubMed  Google Scholar 

  38. Marmur, A. Solid-surface characterization by wetting. Annu. Rev. Mater. Res. 39, 473–489 (2009).

    Article  CAS  Google Scholar 

  39. Law, K.-Y. Contact angle hysteresis on smooth/flat and rough surfaces. Interpretation, mechanism, and origin. Acc. Mater. Res. 3, 1–7 (2021).

    Article  Google Scholar 

  40. Perrin, H., Lhermerout, R., Davitt, K., Rolley, E. & Andreotti, B. Defects at the nanoscale impact contact line motion at all scales. Phys. Rev. Lett. 116, 184502 (2016).

    Article  PubMed  Google Scholar 

  41. Giacomello, A., Schimmele, L. & Dietrich, S. Wetting hysteresis induced by nanodefects. Proc. Natl. Acad. Sci. 113, E262–E271 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. McHale, G., Gao, N., Wells, G. G., Barrio-Zhang, H. & Ledesma-Aguilar, R. Friction coefficients for droplets on solids: the liquid–solid Amontons’ laws. Langmuir 38, 4425–4433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao, N. et al. How drops start sliding over solid surfaces. Nat. Phys. 14, 191–196 (2018).

    Article  CAS  Google Scholar 

  44. Snoeijer, J. H. & Andreotti, B. Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269–292 (2013).

    Article  Google Scholar 

  45. Ritsema van Eck, G. C., Chiappisi, L. & de Beer, S. Fundamentals and applications of polymer brushes in air. ACS Appl. Polym. Mater. 4, 3062–3087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Jones, R. A. L. Glasses with liquid-like surfaces. Nat. Mater. 2, 645–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Fakhraai, Z. & Forrest, J. A. Measuring the surface dynamics of glassy polymers. Science 319, 600–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Hao, Z. et al. Mobility gradients yield rubbery surfaces on top of polymer glasses. Nature 596, 372–376 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Sperling, L. H. in Introduction To Physical Polymer Science 349–426 (Wiley, 2006).

  51. Cheng, D. F., Urata, C., Yagihashi, M. & Hozumi, A. A statically oleophilic but dynamically oleophobic smooth nonperfluorinated surface. Angew. Chem. Int. Ed. 124, 3010–3013 (2012). A study demonstrating the dynamic omniphobic mechanism of LLSs.

    Article  Google Scholar 

  52. Cheng, D. F., Masheder, B., Urata, C. & Hozumi, A. Smooth perfluorinated surfaces with different chemical and physical natures: their unusual dynamic dewetting behavior toward polar and nonpolar liquids. Langmuir 29, 11322–11329 (2013). A pioneering example of a PFPE-grafted surface with liquid-like nature and low hysteresis.

    Article  CAS  PubMed  Google Scholar 

  53. Yarbrough, J. C. et al. Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers. Macromolecules 39, 2521–2528 (2006).

    Article  CAS  Google Scholar 

  54. Hozumi, A. & McCarthy, T. Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis. Langmuir 26, 2567–2573 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Lhermerout, R., Perrin, H., Rolley, E., Andreotti, B. & Davitt, K. A moving contact line as a rheometer for nanometric interfacial layers. Nat. Commun. 7, 12545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rubinstein, M. & Colby, R. H. in Polymer Physics 49–96 (Oxford Univ. Press, 2003).

  57. Longenberger, T. B., Ryan, K. M., Bender, W. Y., Krumpfer, A.-K. & Krumpfer, J. W. The art of silicones: bringing siloxane chemistry to the undergraduate curriculum. J. Chem. Educ. 94, 1682–1690 (2017).

    Article  CAS  Google Scholar 

  58. Zheng, P. & McCarthy, T. J. Rediscovering silicones: molecularly smooth, low surface energy, unfilled, UV/vis-transparent, extremely cross-linked, thermally stable, hard, elastic PDMS. Langmuir 26, 18585–18590 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Krumpfer, J. W. & McCarthy, T. J. Rediscovering silicones: “unreactive” silicones react with inorganic surfaces. Langmuir 27, 11514–11519 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Hamada, T. Rotational isomeric state study of molecular dimensions and elasticity of perfluoropolyethers: differences between Demnum-, Fomblin-, and Krytox-type main chains. Phys. Chem. Chem. Phys. 2, 115–122 (2000).

    Article  CAS  Google Scholar 

  61. Pauling, L. The nature of silicon–oxygen bonds. Am. Mineral. 65, 321–323 (1980).

    CAS  Google Scholar 

  62. Agapov, A. & Sokolov, A. P. Size of the dynamic bead in polymers. Macromolecules 43, 9126–9130 (2010).

    Article  CAS  Google Scholar 

  63. Singh, N. et al. Omniphobic metal surfaces with low contact angle hysteresis and tilt angles. Langmuir 34, 11405–11413 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Cheng, D. F., Urata, C., Masheder, B. & Hozumi, A. A physical approach to specifically improve the mobility of alkane liquid drops. J. Am. Chem. Soc. 134, 10191–10199 (2012). A study demonstrating the effect of chain length on liquid-like nature.

    Article  CAS  PubMed  Google Scholar 

  65. Brittain, W. J. & Minko, S. A structural definition of polymer brushes. J. Polym. Sci. A 45, 3505–3512 (2007).

    Article  CAS  Google Scholar 

  66. Fadeev, A. Y. & McCarthy, T. J. Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir 15, 3759–3766 (1999).

    Article  CAS  Google Scholar 

  67. Scott, M. C., Stevens, D. R., Bochinski, J. R. & Clarke, L. I. Dynamics within alkylsiloxane self-assembled monolayers studied by sensitive dielectric spectroscopy. ACS Nano 2, 2392–2400 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Urata, C., Cheng, D. F., Masheder, B. & Hozumi, A. Smooth, transparent and nonperfluorinated surfaces exhibiting unusual contact angle behavior toward organic liquids. RSC Adv. 2, 9805–9808 (2012).

    Article  CAS  Google Scholar 

  69. Urata, C., Masheder, B., Cheng, D. F. & Hozumi, A. How to reduce resistance to movement of alkane liquid drops across tilted surfaces without relying on surface roughening and perfluorination. Langmuir 28, 17681–17689 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Urata, C., Masheder, B., Cheng, D. F. & Hozumi, A. Unusual dynamic dewetting behavior of smooth perfluorinated hybrid films: potential advantages over conventional textured and liquid-infused perfluorinated surfaces. Langmuir 29, 12472–12482 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Lhermerout, R. & Davitt, K. Contact angle dynamics on pseudo-brushes: effects of polymer chain length and wetting liquid. Colloids Surf. A 566, 148–155 (2019).

    Article  CAS  Google Scholar 

  72. Flagg, D. H. & McCarthy, T. J. Rapid and clean covalent attachment of methylsiloxane polymers and oligomers to silica using B(C6F5)3 catalysis. Langmuir 33, 8129–8139 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Huang, Y. et al. A facile approach to fabricate dynamically omniphobic coating on diverse substrates for self-cleaning. Prog. Org. Coat. 132, 475–480 (2019).

    Article  CAS  Google Scholar 

  74. Gao, P. et al. Liquid-like transparent and flexible coatings for anti-graffiti applications. Prog. Org. Coat. 161, 106476 (2021).

    Article  CAS  Google Scholar 

  75. Zhang, G., Liang, B., Zhong, Z., Huang, Y. & Su, Z. One-step solvent-free strategy for covalently attached, substrate-independent transparent slippery coating. Adv. Mater. Interf. 5, 1800646 (2018).

    Article  Google Scholar 

  76. Luap, C. & Goedel, W. A. Linear viscoelastic behavior of end-tethered polymer monolayers at the air/water interface. Macromolecules 34, 1343–1351 (2001).

    Article  CAS  Google Scholar 

  77. Wang, L. & McCarthy, T. J. Covalently attached liquids: instant omniphobic surfaces with unprecedented repellency. Angew. Chem. Int. Ed. 55, 244–248 (2016). A report of a simple, rapid graft-from approach for preparing liquid-like PDMS brushes.

    Article  CAS  Google Scholar 

  78. Wooh, S. & Butt, H. J. A photocatalytically active lubricant-impregnated surface. Angew. Chem. Int. Ed. 129, 5047–5051 (2017).

    Article  Google Scholar 

  79. Wooh, S., Encinas, N., Vollmer, D. & Butt, H. J. Stable hydrophobic metal-oxide photocatalysts via grafting polydimethylsiloxane brush. Adv. Mater. 29, 1604637 (2017).

    Article  Google Scholar 

  80. Teisala, H., Baumli, P., Weber, S. A. L., Vollmer, D. & Butt, H.-J. Grafting silicone at room temperature — a transparent, scratch-resistant nonstick molecular coating. Langmuir 36, 4416–4431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, P. et al. Development of “liquid-like” copolymer nanocoatings for reactive oil-repellent surface. ACS Nano 11, 2248–2256 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Yu, M. et al. Covalently grafted liquids for transparent and omniphobic surfaces via thiol-ene click chemistry. J. Mater. Sci. 55, 12811–12825 (2020).

    Article  CAS  Google Scholar 

  83. Liu, J. et al. One-step synthesis of a durable and liquid-repellent poly(dimethylsiloxane) coating. Adv. Mater. 33, 2100237 (2021).

    Article  CAS  Google Scholar 

  84. Zhang, L., Guo, Z., Sarma, J. & Dai, X. Passive removal of highly wetting liquids and ice on quasi-liquid surfaces. ACS Appl. Mater. Interf. 12, 20084–20095 (2020).

    Article  CAS  Google Scholar 

  85. Zhao, X., Khandoker, M. A. R. & Golovin, K. Non-fluorinated omniphobic paper with ultralow contact angle hysteresis. ACS Appl. Mater. Interf. 12, 15748–15756 (2020).

    Article  CAS  Google Scholar 

  86. Khatir, B., Shabanian, S. & Golovin, K. Design and high-resolution characterization of silicon wafer-like omniphobic liquid layers applicable to any substrate. ACS Appl. Mater. Interf. 12, 31933–31939 (2020).

    Article  CAS  Google Scholar 

  87. Huang, S., Li, J., Liu, L., Zhou, L. & Tian, X. Lossless fast drop self-transport on anisotropic omniphobic surfaces: origin and elimination of microscopic liquid residue. Adv. Mater. 31, 1901417 (2019). A report of a surface integrating anisotropic microstructure with a liquid-like PFPE coating that can realize truly lossless droplet self-transport even at greatly enhanced transport speed.

    Article  Google Scholar 

  88. Soltani, M. & Golovin, K. Lossless, passive transportation of low surface tension liquids induced by patterned omniphobic liquidlike polymer brushes. Adv. Funct. Mater. 32, 2107465 (2022).

    Article  CAS  Google Scholar 

  89. Kaneko, S., Urata, C., Sato, T., Hönes, R. & Hozumi, A. Smooth and transparent films showing paradoxical surface properties: the lower the static contact angle, the better the water sliding performance. Langmuir 35, 6822–6829 (2019). A pioneering example of a PEG-grafted surface with statically hydrophilic but dynamically hydrophobic properties.

    Article  CAS  PubMed  Google Scholar 

  90. Cha, H. et al. Dropwise condensation on solid hydrophilic surfaces. Sci. Adv. 6, eaax0746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Papra, A., Gadegaard, N. & Larsen, N. B. Characterization of ultrathin poly(ethylene glycol) monolayers on silicon substrates. Langmuir 17, 1457–1460 (2001).

    Article  CAS  Google Scholar 

  92. Zhong, X., Hu, H., Yang, L., Sheng, J. & Fu, H. Robust hyperbranched polyester-based anti-smudge coatings for self-cleaning, anti-graffiti, and chemical shielding. ACS Appl. Mater. Interf. 11, 14305–14312 (2019).

    Article  CAS  Google Scholar 

  93. Yang, J., Li, J., Jia, X., Li, Y. & Song, H. Fabrication of robust and transparent slippery coating with hot water repellency, antifouling property, and corrosion resistance. ACS Appl. Mater. Interf. 12, 28645–28654 (2020).

    Article  CAS  Google Scholar 

  94. Wei, D., Zeng, J. & Yong, Q. High-performance bio-based polyurethane antismudge coatings using castor oil-based hyperbranched polyol as superior cross-linkers. ACS Appl. Polym. Mater. 3, 3612–3622 (2021).

    Article  CAS  Google Scholar 

  95. Zhong, X., Lv, L., Hu, H., Jiang, X. & Fu, H. Bio-based coatings with liquid repellency for various applications. Chem. Eng. J. 382, 123042 (2020).

    Article  CAS  Google Scholar 

  96. Yu, L., Chen, G. Y., Xu, H. & Liu, X. Substrate-independent, transparent oil-repellent coatings with self-healing and persistent easy-sliding oil repellency. ACS Nano 10, 1076–1085 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Huang, S. et al. Water-based anti-smudge NP-GLIDE polyurethane coatings. Chem. Eng. J. 351, 210–220 (2018).

    Article  CAS  Google Scholar 

  98. Hu, H., Liu, G. & Wang, J. Clear and durable epoxy coatings that exhibit dynamic omniphobicity. Adv. Mater. Interf. 3, 1600001 (2016).

    Article  Google Scholar 

  99. Lei, L., Buddingh, J., Wang, J. & Liu, G. Transparent omniphobic polyurethane coatings containing partially acetylated β-cyclodextrin as the polyol. Chem. Eng. J. 380, 122554 (2020).

    Article  Google Scholar 

  100. Rabnawaz, M., Liu, G. & Hu, H. Fluorine-free anti-smudge polyurethane coatings. Angew. Chem. Int. Ed. 127, 12913–12918 (2015).

    Article  Google Scholar 

  101. Rabnawaz, M. & Liu, G. Graft-copolymer-based approach to clear, durable, and anti-smudge polyurethane coatings. Angew. Chem. Int. Ed. 54, 6516–6520 (2015).

    Article  CAS  Google Scholar 

  102. Xu, F., Li, X., Weng, D., Li, Y. & Sun, J. Transparent antismudge coatings with thermally assisted healing ability. J. Mater. Chem. A 7, 2812–2820 (2019).

    Article  CAS  Google Scholar 

  103. Ma, J. et al. Ultra-thin self-healing vitrimer coatings for durable hydrophobicity. Nat. Commun. 12, 5210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Musil, J. Flexible hard nanocomposite coatings. RSC Adv. 5, 60482–60495 (2015).

    Article  CAS  Google Scholar 

  105. Sanchez, C., Arribart, H. & Giraud Guille, M. M. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Boban, M. et al. Smooth, all-solid, low-hysteresis, omniphobic surfaces with enhanced mechanical durability. ACS Appl. Mater. Interf. 10, 11406–11413 (2018).

    Article  CAS  Google Scholar 

  107. Bender, D. N., Zhang, K., Wang, J. & Liu, G. Hard yet flexible transparent omniphobic GPOSS coatings modified with perfluorinated agents. ACS Appl. Mater. Interf. 13, 10467–10479 (2021).

    Article  CAS  Google Scholar 

  108. Zhang, K., Huang, S., Wang, J. & Liu, G. Transparent organic/silica nanocomposite coating that is flexible, omniphobic, and harder than a 9H pencil. Chem. Eng. J. 396, 125211 (2020).

    Article  CAS  Google Scholar 

  109. Choi, G. M. et al. Flexible hard coating: glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays. Adv. Mater. 29, 1700205 (2017).

    Article  Google Scholar 

  110. Zhang, K., Huang, S., Wang, J. & Liu, G. Transparent omniphobic coating with glass-like wear resistance and polymer-like bendability. Angew. Chem. Int. Ed. 58, 12004–12009 (2019). A report of a durable hard-yet-flexible liquid-like coating that could resist the wear of steel wool.

    Article  CAS  Google Scholar 

  111. Zheng, W. et al. Judicious design and rapid manufacturing of flexible, mechanically resistant liquid-like coating with strong bonding and antifouling abilities. Adv. Mater. 34, 2204581 (2022).

    Article  CAS  Google Scholar 

  112. Lai, Z. & Liu, G. Facile preparation of a transparent and rollable omniphobic coating with exceptional hardness and wear resistance. ACS Appl. Mater. Interf. 14, 35138–35147 (2022).

    Article  CAS  Google Scholar 

  113. Urata, C., Masheder, B., Cheng, D. F. & Hozumi, A. A thermally stable, durable and temperature-dependent oleophobic surface of a polymethylsilsesquioxane film. Chem. Commun. 49, 3318–3320 (2013).

    Article  CAS  Google Scholar 

  114. Gao, P. et al. Rational design of durable anti-fouling coatings with high transparency, hardness, and flexibility. ACS Appl. Mater. Interf. 14, 29156–29166 (2022).

    Article  CAS  Google Scholar 

  115. Wang, Y. et al. Liquid-like SiO2-g-PDMS coatings on wood surfaces with underwater durability, antifouling, antismudge, and self-healing properties. Adv. Sustain. Syst. 3, 1800070 (2019).

    Article  Google Scholar 

  116. Wang, Y. & He, J. Fabrication of ultra-smooth hybrid thin coatings towards robust, highly transparent, liquid-repellent and antismudge coatings. J. Colloid Interf. Sci. 594, 781–790 (2021).

    Article  CAS  Google Scholar 

  117. Zhang, L., Guo, Z., Sarma, J., Zhao, W. & Dai, X. Gradient quasi-liquid surface enabled self-propulsion of highly wetting liquids. Adv. Funct. Mater. 31, 2008614 (2021).

    Article  CAS  Google Scholar 

  118. Yang, C. et al. Liquid-like polymer-based self-cleaning coating for effective prevention of liquid foods contaminations. J. Colloid Interf. Sci. 589, 327–335 (2021).

    Article  CAS  Google Scholar 

  119. Zheng, C., Liu, G. & Hu, H. UV-curable antismudge coatings. ACS Appl. Mater. Interf. 9, 25623–25630 (2017).

    Article  CAS  Google Scholar 

  120. Zhong, X., Sheng, J. & Fu, H. A novel UV/sunlight-curable anti-smudge coating system for various substrates. Chem. Eng. J. 345, 659–668 (2018).

    Article  CAS  Google Scholar 

  121. Gee, E., Liu, G., Hu, H. & Wang, J. Effect of varying chain length and content of poly(dimethylsiloxane) on dynamic dewetting performance of NP-GLIDE polyurethane coatings. Langmuir 34, 10102–10113 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Masheder, B., Urata, C. & Hozumi, A. Transparent and hard zirconia-based hybrid coatings with excellent dynamic/thermoresponsive oleophobicity, thermal durability, and hydrolytic stability. ACS Appl. Mater. Interf. 5, 7899–7905 (2013).

    Article  CAS  Google Scholar 

  123. Wu, C. et al. Whether and when superhydrophobic/superoleophobic surfaces are fingerprint repellent. Research 2022, 9850316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu, Q. et al. Slippery liquid-attached surface for robust biofouling resistance. ACS Biomater. Sci. Eng. 6, 358–366 (2019).

    Article  PubMed  Google Scholar 

  125. Zhu, Y. et al. Slippery liquid-like solid surfaces with promising antibiofilm performance under both static and flow conditions. ACS Appl. Mater. Interf. 14, 6307–6319 (2022).

    Article  CAS  Google Scholar 

  126. Yang, C. et al. Liquid-like polymer coating as a promising candidate for reducing electrode contamination and noise in complex biofluids. ACS Appl. Mater. Interf. 13, 4450–4462 (2021).

    Article  CAS  Google Scholar 

  127. Wu, Q. et al. Liquid-like layer coated intraocular lens for posterior capsular opacification prevention. Appl. Mater. Today 23, 100981 (2021).

    Article  Google Scholar 

  128. Hao, X. et al. Self-lubricative organic–inorganic hybrid coating with anti-icing and anti-waxing performances by grafting liquid-like polydimethylsiloxane. Adv. Mater. Interf. 9, 2200160 (2022).

    Article  CAS  Google Scholar 

  129. Ouyang, M. et al. Ultralow-adhesion icephobic surfaces: combining superhydrophobic and liquid-like properties in the same surface. Nano Res. https://doi.org/10.1007/s12274-022-4746-z (2022).

    Article  Google Scholar 

  130. Zheng, H., Liu, G., Nienhaus, B. B. & Buddingh, J. V. Ice-shedding polymer coatings with high hardness but low ice adhesion. ACS Appl. Mater. Interf. 14, 6071–6082 (2022).

    Article  CAS  Google Scholar 

  131. Zhao, X. et al. Macroscopic evidence of the liquidlike nature of nanoscale polydimethylsiloxane brushes. ACS Nano 15, 13559–13567 (2021). A study providing macroscopic evidence of the liquid-like nature of PDMS brushes.

    Article  CAS  PubMed  Google Scholar 

  132. Sarma, J., Zhang, L., Guo, Z. & Dai, X. Sustainable icephobicity on durable quasi-liquid surface. Chem. Eng. J. 431, 133475 (2022).

    Article  CAS  Google Scholar 

  133. Halvey, A. K. et al. Rapid and robust surface treatment for simultaneous solid and liquid repellency. ACS Appl. Mater. Interf. 13, 53171–53180 (2021).

    Article  CAS  Google Scholar 

  134. Newby, B.-mZ., Chaudhury, M. K. & Brown, H. R. Macroscopic evidence of the effect of interfacial slippage on adhesion. Science 269, 1407–1409 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Meng, J. & Wang, S. Advanced antiscaling interfacial materials toward highly efficient heat energy transfer. Adv. Funct. Mater. 30, 1904796 (2020).

    Article  CAS  Google Scholar 

  136. Chen, Y. et al. Dynamic poly(dimethylsiloxane) brush coating shows even better antiscaling capability than the low-surface-energy fluorocarbon counterpart. Environ. Sci. Technol. 55, 8839–8847 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Zhao, H. et al. Extreme antiscaling performance of slippery omniphobic covalently attached liquids. ACS Appl. Mater. Interf. 12, 12054–12067 (2020).

    Article  CAS  Google Scholar 

  138. Zhao, H. et al. Scalable slippery omniphobic covalently attached liquid coatings for flow fouling reduction. ACS Appl. Mater. Interf. 13, 38666–38679 (2021).

    Article  CAS  Google Scholar 

  139. Lin, S., Li, B., Xu, Y., Mehrizi, A. A. & Chen, L. Effective strategies for droplet transport on solid surfaces. Adv. Mater. Interf. 8, 2001441 (2021).

    Article  Google Scholar 

  140. Monga, D. et al. Quasi-liquid surfaces for sustainable high-performance steam condensation. ACS Appl. Mater. Interf. 14, 13932–13941 (2022).

    Article  CAS  Google Scholar 

  141. Baidya, A., Das, S. K. & Pradeep, T. An aqueous composition for lubricant-free, robust, slippery, transparent coatings on diverse substrates. Glob. Chall. 2, 1700097 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Li, J. et al. Oil droplet self-transportation on oleophobic surfaces. Sci. Adv. 2, e1600148 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wang, X., Wang, Z., Heng, L. & Jiang, L. Stable omniphobic anisotropic covalently grafted slippery surfaces for directional transportation of drops and bubbles. Adv. Funct. Mater. 30, 1902686 (2020).

    Article  CAS  Google Scholar 

  144. Huang, S., Li, J., Chen, L. & Tian, X. Suppressing the universal occurrence of microscopic liquid residues on super-liquid-repellent surfaces. J. Phys. Chem. Lett. 12, 3577–3585 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Wang, Z., Wang, Y. & Liu, G. Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angew. Chem. Int. Ed. 55, 1291–1294 (2016).

    Article  CAS  Google Scholar 

  146. Liu, Y., Wang, X. & Feng, S. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil–water separation. Adv. Funct. Mater. 29, 1902488 (2019).

    Article  Google Scholar 

  147. Chen, L. et al. A grafted-liquid lubrication strategy to enhance membrane permeability in viscous liquid separation. J. Membr. Sci. 610, 118240 (2020).

    Article  CAS  Google Scholar 

  148. Liu, S. et al. A strategy of liquid-grafted slippery sponges with simultaneously enhanced absorption and desorption performances for crude oil spill remediation. Macromol. Mater. Eng. 306, 2100242 (2021).

    Article  CAS  Google Scholar 

  149. Huang, Y.-X., Liang, D.-Q., Luo, C.-H., Zhang, Y. & Meng, F. Liquid-like surface modification for effective anti-scaling membrane distillation with uncompromised flux. J. Membr. Sci. 637, 119673 (2021).

    Article  CAS  Google Scholar 

  150. Liu, D., Cao, J., Qiu, M., Zhang, G. & Hong, Y. Enhanced properties of PVDF nanofibrous membrane with liquid-like coating for membrane distillation. Sep. Purif. Technol. 295, 121282 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.C., S.H. and X.T. acknowledge financial support from the National Natural Science Foundation of China (grants 22072185, 21872176 and 12072381), the Guangdong Basic and Applied Basic Research Foundation (grant 2021A1515110221), the Pearl River Talents Program (grant 2017GC010671) and the Natural Science Foundation of Guangdong Province (grant 2019A1515012030). R.H.A.R. acknowledges funding from the Academy of Finland Center of Excellence Program (2022–2029) in Life-Inspired Hybrid Materials (LIBER) (project number 346109) and Academy Project (project number 342169) and from the European Research Council for funding the Consolidator Grant SuperRepel (grant agreement no. 725513).

Author information

Authors and Affiliations

Authors

Contributions

L.C. wrote and edited the article. S.H., X.T. and R.H.A.R. contributed to the discussion of content and edited the manuscript before submission.

Corresponding authors

Correspondence to Robin H. A. Ras or Xuelin Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Guojun Liu and the other anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Advancing contact angle

(θA). The maximum stable contact angle, typically measured by increasing the volume of the droplet and watching until the solid–liquid–air three-phase contact line starts advancing.

Contact angle hysteresis

(CAH). The difference between the advancing contact angle and the receding contact angle, characterizing the surface pinning effect that resists droplet motion.

Omniphobicity

The ability of a surface to repel all types of liquid.

Receding contact angle

(θR). The minimum stable contact angle, typically measured by decreasing the volume of the droplet and watching until the solid–liquid–air three-phase contact line starts receding.

Superhydrophobic surfaces

(SHPSs). Water-repellent surfaces that have a water contact angle above 150° and a sliding angle generally below 10°.

Superoleophobic surfaces

(SOPSs). Oil-repellent surfaces that have an oil contact angle above 150° and a sliding angle generally below 10°.

Slippery lubricant-infused porous surfaces

(SLIPSs). Porous surfaces infused with a lubrication liquid that can repel immiscible probe droplets.

Static contact angle

(SCA). The apparent contact angle obtained by placing a droplet on a surface, which can have any value between the advancing and receding contact angles.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Huang, S., Ras, R.H.A. et al. Omniphobic liquid-like surfaces. Nat Rev Chem 7, 123–137 (2023). https://doi.org/10.1038/s41570-022-00455-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00455-w

  • Springer Nature Limited

This article is cited by

Navigation