Skip to main content
Log in

Tripod-shaped POSS compounds as single-component silsesquioxane hybrids

  • Original Article
  • Published:
Polymer Journal Submit manuscript

Abstract

A combination of multiple cage silsesquioxane frameworks in a single molecule provides an attractive candidate for developing low-temperature processable silsesquioxane hybrid materials. Here, we prepared a series of propylene (C3) and hexylene (C6)-linked tripod-shaped polyhedral octasilsesquioxane (POSS) derivatives by hydrosilylation of tris(dimethylsilyl)heptaisobutyl-substituted corner-opening-type POSS (CO-POSS) (1iBu) or tris(dimethylsilyl)heptaphenyl-CO-POSS (1Ph) with completely condensed POSSs (CC-POSSs), heptaisobutylallyl-CC-POSS (2iBu-C3), heptaphenylallyl-CC-POSS (2Ph-C3), or heptaisobutylhexenyl-CC-POSS (2iBu-C6). The tripod structures were confirmed by 1H, 13C- and 29Si-NMR and MALDI-TOF-MS analyses. Annealed cast films of the tripod-shaped POSSs were optically transparent, except those consisting the phenyl-substituted CC-POSS, which were rather turbid. DSC analyses of the tripod-shaped POSSs showed endothermic peaks corresponding to melting (Tm) and suggested that the phenyl-substituted CO-POSS unit reduced the Tms compared with that of the isobutyl-substituted CO-POSS. The elastic moduli of the annealed cast films suggested that well-defined silsesquioxane materials on the molecular level enable control of their thermal and mechanical properties. Poly(methyl methacrylate) (PMMA) films containing 10 wt% of the tripod-shaped POSS derivatives gave optically transparent films except for those containing the phenyl-substituted CC-POSS, which provided opaque films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baney RH, Itoh M, Sakakibara A, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95:1409–30.

    Article  CAS  Google Scholar 

  2. Nicole L, Boissie’re C, Grosso D, Quach S, Sanchez C. Mesostructured hybrid organic-inorganic thin films. J Mater Chem. 2005;15:3598–627.

    Article  CAS  Google Scholar 

  3. Lee LH, Chen WC, Liu WC. Structural control of oligomeric methyl silsesquioxane precursors and their thin-film properties. J Polym Sci Part A Polym Chem. 2002;40:1560–71.

    Article  CAS  Google Scholar 

  4. Akcora P, Liu H, Kumar SK, Moll J, Li Y, Benicewicz BC, et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat Mater. 2009;8:354–9.

    Article  CAS  PubMed  Google Scholar 

  5. Tchoul MN, Fillery SP, Koerner H, Drummny LF, Oyerokun FT, Mirau PA, et al. Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem Mater. 2010;22:1749–59.

    Article  CAS  Google Scholar 

  6. Tao P, Li Y, Rungta A, Viswanath A, Gao J, Benicewica BC, et al. TiO2 nanoparticles with high refractive index and transparency. J Mater Chem. 2011;21:18623–9.

    Article  CAS  Google Scholar 

  7. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn. 2015;88:633–43.

    Article  CAS  Google Scholar 

  8. Gon M, Tanaka K, Chujo Y. Recent progress in the development of advanced element-block materials. Polym J. 2018;50:109–26.

    Article  CAS  Google Scholar 

  9. Laine RM. Nanobuilding blocks base on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanews. J Mater Chem. 2005;15:3725–44.

    Article  CAS  Google Scholar 

  10. Cordes DB, Lickiss PD, Rataboul F. Recent development in the chemistry of cubic polyhedral oligosilisesquioxanes. Chem Rev. 2010;110:2081–173.

    Article  CAS  PubMed  Google Scholar 

  11. Araki H, Naka K. Syntheses of dumbbell-shaped trifluoropropyl-substituted POSS derivatives linked by simple aliphatic chains and their optical transparent thermoplastic films. Macromolecules. 2011;44:6039–45.

    Article  CAS  Google Scholar 

  12. Araki H, Naka K. Syntheses and properties of star- and dumbbell-shaped POSS derivatives containing isobutyl groups. Polym J. 2012;44:340–6.

    Article  CAS  Google Scholar 

  13. Yasumoto Y, Yamanaka T, Sakurai S, Imoto H, Naka K. Design of low-crystalline and -density isobutyl-substituted caged silsesquioxane derivatives by star-shaped architectures linked with short aliphatic chains. Polym J. 2016;48:281–7.

    Article  CAS  Google Scholar 

  14. Suzuki R, Li L, Imoto H, Takagi H, Sakurai S, Naka K. Single component optically transparent film of star-shaped cage silsesquioxane derivative and its phase change behavior. Polym J. 2022;54:1179–90.

    Article  CAS  Google Scholar 

  15. Croce G, Carniato F, Milanesio M, Boccaleri E, Paul G, van Beek W, et al. Understanding the physico-chemical properties of polyhedral oligomeric silsesquioxanes: a variable temperature multidisciplinary study. Phys Chem Chem Phys. 2009;11:10087–94.

    Article  CAS  PubMed  Google Scholar 

  16. Poliskie GM, Haddad TS, Blanski RL, Gleason KK. Characterization of the phase transitions of ethyl substituted polyhedral oligomeric silsesquioxane. Thermochim Acta. 2005;438:116–25.

    Article  CAS  Google Scholar 

  17. Kettwich SC, Pierson SN, Peloquin AJ, Marbry JM, Iacono ST. Anomalous macromolecular assembly of partially fluorinated polyhedral oligomeric silsesquioxanes. New J Chem. 2012;36:941–6.

    Article  CAS  Google Scholar 

  18. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Caminoa G. Polyhedral oligomeric silsesquixanes (POSS) thermal degradation. Thermochim Acta. 2005;440:36–42.

    Article  Google Scholar 

  19. Abe H, Note R, Mizuseki H, Kawazoe Y, Habasaki J, Tomita I. Thermal behavior of caged silsesquioxane (POSS) studied by molecular dynamics simulations. J Inorg Organomet Polym. 2012;22:845–51.

    Article  CAS  Google Scholar 

  20. Guenthner AJ, Lamison KR, Lubin LM, Haddad TS, Mabry JM. Hansen solubility parameters for octahedral oligomeric silisesquioxanes. Ind Eng Chem Res. 2012;51:12282–93.

    Article  CAS  Google Scholar 

  21. Ishida A, Fujii S, Sumida A, Kamitani T, Minami S, Urayama K, et al. Supramolecular organogel formation behaviors of beads-on-string shaped poly(azomethine)s dependent on POSS structures in the main chains. Polym Chem. 2012;12:3169–76.

    Article  Google Scholar 

  22. Nagao M, Hayashi T, Imoto H, Naka K. Unsymmetric dumbbell-shaped polyhedral oligomeric silsesquioxane (POSS) compound as a single component POSS hybrid. Langmuir. 2021;37:14777–84.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Zhang WB, Hsieh IF, Zhang G, Cao Y, Li X, et al. Breaking symmetry toward nonspherical janus particles based on polyhedral oligomeric silsesquioxanes: molecular design “click” synthesism and hierarchical structure. J Am Chem Soc. 2011;133:10712–5.

    Article  CAS  PubMed  Google Scholar 

  24. Imoto H, Nakao Y, Nishizawa N, Fujii S, Nakamura Y, Naka K. Tripodal polyhedral oligomeric silsesquixanes as novel class of three-dimensional emulsifiers. Polym J. 2015;47:609–15.

    Article  CAS  Google Scholar 

  25. Yuasa S, Sato Y, Imoto H, Naka K. Thermal properties of open-cage silsesquioxanes: the effect of substituents at the corners and opening moieties. Bull Chem Soc Jpn. 2019;92:127–32.

    Article  CAS  Google Scholar 

  26. Imoto H, Katoh R, Naka K. Open-cage silsesquioxane necklace polymers having closed-cage silsesquioxane pendants. Polym Chem. 2018;9:4108–12.

    Article  CAS  Google Scholar 

  27. Yuasa S, Sato Y, Imoto H, Naka K. Synthesis and properties of hyperbranched polymers by polymerization of AB3-type incompletely condensed cage silsesquioxane (IC-POSS) monomer. J Appl Polym Sci. 2018;135:46033.

    Article  Google Scholar 

  28. Mituła K, Dutkiewicz M, Dudziec B, Marciniec B, Czaja K. A library of monoalkenylsilsesquioxanes as potential comonomers for synthesis of hybrid materials. J Therm Anal Calorim. 2018;132:1545–55.

    Article  Google Scholar 

  29. Turri S, Levi M. Structure, dynamic properties, and surface behavior of nanostructured ionomeric polyurethanes from reactive polyhedral oligomeric silsesquioxanes. Macromolecules. 2005;38:5569–74.

    Article  CAS  Google Scholar 

  30. Yamamoto K, Kawaguchi D, Abe T, Komino T, Mamada M, Kabe T, et al. Surface segregation of a star-shaped polyhedral oligomeric silsesquioxane in a polymer matrix. Langmuir. 2020;36:9960–66.

    Article  CAS  PubMed  Google Scholar 

  31. Hansen CM. Hansen Solubility Parameters: A User’s Handbook. 2nd ed. Boca Raton, FL: CRC Press; 2007.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (No. 19H02764 and 21K19003) from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan. We thank Dr. Tsuneaki Sakurai of Kyoto Institute of Technology for XRD analyses. We thank Prof. Tsuyoshi Kawai, Prof. Yo Shimizu, Ms Yoshiko Nishikawa, and Ms Mieko Yamagaki of Nara Institute of Science and Technology for performing MALDI-TOF-MS supported by the Nanotechnology Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Naka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagao, M., Imoto, H. & Naka, K. Tripod-shaped POSS compounds as single-component silsesquioxane hybrids. Polym J 56, 31–42 (2024). https://doi.org/10.1038/s41428-023-00835-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00835-z

  • Springer Nature Limited

This article is cited by

Navigation