Skip to main content
Log in

A novel three-cages POSS molecule: synthesis and thermal behaviour

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two novel 4-methyl phenyl (trioxyisobutyl POSS) silane and 4-methyl phenyl (trioxycyclopentyl POSS) silane were synthesized. The nanosystems were characterized by elemental analysis, 1H NMR and FTIR spectroscopy, in order to verify that the obtained products were those we would prepare. The spectroscopic results were in very good agreement with those expected. The synthesized POSSs were thermally characterized, by the means of thermogravimetric (TGA) and differential scanning calorimetry analyses. TGA was carried out in dynamic heating conditions (25–700 °C), in both flowing nitrogen and static air atmosphere. The temperatures at 5% mass loss (T5%), determined to evaluate their thermal stability, evidenced a better behaviour in inert environment. The obtained T5% values were much higher for cyclopentyl POSSs and then for isobutyl ones, suggesting a fundamental role of organic group dimensions at the periphery of the synthesized systems, on the thermal properties. The residue at 700 °C, which were also investigated by FTIR spectroscopy, was a further confirmation of the better thermal stability of these novel nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu J, Mather PT. POSS polymers: physical properties and biomaterials applications. J Macromol Sci C. 2009;49:25–63.

    CAS  Google Scholar 

  2. Scott DW. Thermal rearrangement of branched-chain methylpolysiloxanes. J Am Chem Soc. 1946;68:356–8.

    Article  CAS  Google Scholar 

  3. Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, Feher FJ. Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes. Macromolecules. 1993;26(8):2141–2.

    Article  CAS  Google Scholar 

  4. Lichtenhan JD. Polyhedral oligomeric silsesquioxanes: building blocks for silsesquioxane-based polymers and hybrid materials. Comment Inorg Chem. 1995;17(2):115–30.

    Article  CAS  Google Scholar 

  5. Schwab JJ, Haddad TS, Lichtenhan JD, Mather PT, Chaffee KP. Property enhancements of common thermoplastics via incorporation of silicon based monomers: polyhedral oligomeric silsesquioxane macromers and polymers. In: ANTEC, conference proceedings; 1997. Vol. 2, pp. 1817–1820.

  6. Bertolino V, Cavallaro G, Lazzara G, Milioto S, Parisi F. Biopolymer-targeted adsorption onto halloysite nanotubes in aqueous media. Langmuir. 2017;33:3317–23.

    Article  CAS  Google Scholar 

  7. Vecchio Ciprioti S, Bollino F, Tranquillo E, Catauro M. Synthesis, thermal behavior and physicochemical characterization of ZrO2/PEG inorganic/organic hybrid materials via sol–gel technique. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6318-0.

    Article  Google Scholar 

  8. Blanco I, Bottino FA, Abate L. Influence of n-alkyl substituents on the thermal behaviour of polyhedral oligomeric silsesquioxanes (POSSs) with different cage’s periphery. Thermochim Acta. 2016;623:50–7.

    Article  CAS  Google Scholar 

  9. Moore BM, Ramirez SM, Yandek GR, Haddad TS, Mabry JM. Asymmetric aryl polyhedral oligomeric silsesquioxanes (ArPOSS) with enhanced solubility. J Organomet Chem. 2011;696:2676–80.

    Article  CAS  Google Scholar 

  10. Li S, Simon GP, Matisons JG. The effect of incorporation of POSS units on polymer blend compatibility. J Appl Polym Sci. 2010;115(2):1153–9.

    Article  CAS  Google Scholar 

  11. Blanco I, Abate L, Antonelli ML, Bottino FA, Bottino P. Phenyl hepta cyclopentyl—polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites: the influence of substituents in the phenyl group on the thermal stability. Express Polym Lett. 2012;6(12):997–1006.

    Article  CAS  Google Scholar 

  12. Bolln C, Tsuchida A, Frey H, Mulhaupt R. Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater. 1997;9(6):1475–9.

    Article  CAS  Google Scholar 

  13. Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW. Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS—siloxane copolymers. Chem Mater. 1996;8(6):1250–9.

    Article  CAS  Google Scholar 

  14. Fina A, Tabuani D, Frache A, Boccaleri E, Camino G. In: Le Bras M, Wilkie C, Bourbigot S, editors. Fire retardancy of polymers: new applications of mineral fillers. Cambridge: Royal Society of Chemistry; 2005. p. 202–20.

    Google Scholar 

  15. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440(1):36–42.

    Article  CAS  Google Scholar 

  16. Blanco I, Abate L, Bottino FA. Mono substituted octaphenyl POSSs: the effects of substituents on thermal properties and solubility. Thermochim Acta. 2017;655(117–123):28.

    Google Scholar 

  17. Blanco I, Abate L, Bottino FA. Synthesis and thermal properties of new dumbbell-shaped isobutyl-substituted POSSs linked by aliphatic bridges. J Therm Anal Calorim. 2014;116(1):5–13.

    Article  CAS  Google Scholar 

  18. Blanco I, Abate L, Bottino FA, Bottino P. Synthesis, characterization and thermal stability of new dumbbell-shaped isobutyl-substituted POSSs linked by aromatic bridges. J Therm Anal Calorim. 2014;117(1):243–50.

    Article  CAS  Google Scholar 

  19. Blanco I, Abate L, Bottino FA. Synthesis and thermal characterization of new dumbbell-shaped cyclopentyl-substituted POSSs linked by aliphatic and aromatic bridges. J Therm Anal Calorim. 2015;121(3):1039–48.

    Article  CAS  Google Scholar 

  20. Blanco I, Abate L, Bottino FA. Synthesis and thermal behaviour of phenyl-substituted POSSs linked by aliphatic and aromatic bridges. J Therm Anal Calorim. 2018;131(2):843–51.

    Article  CAS  Google Scholar 

  21. Feher FJ, Newman DA. Enhanced silylation reactivity of a model for silica surfaces. J Am Chem Soc. 1990;112(5):1931–6.

    Article  CAS  Google Scholar 

  22. Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW. Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c–C5H9)7Si7O9(OH)3], [(c–C7H13)7Si7O9 (OH)3], and [(c–C7H13)6Si6O7(OH)4]. Organometallics. 1991;10(7):2526–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, I., Bottino, F.A., Bottino, P. et al. A novel three-cages POSS molecule: synthesis and thermal behaviour. J Therm Anal Calorim 134, 1337–1344 (2018). https://doi.org/10.1007/s10973-018-7206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7206-y

Keywords

Navigation