Skip to main content

Silsesquioxanes

  • Chapter
  • First Online:
Functional Molecular Silicon Compounds I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 155))

Abstract

The diversity of structures of silsesquioxanes with the general composition (RSiO1.5) n is great and involves amorphous compounds, ladder structures, open cages, and polyhedral oligomeric silsesquioxane (POSS) molecules. The obtained structure morphology depends strongly on the applied reaction conditions. The enormous amount of potential substitution patterns combined with the chemical and thermal robust silicon oxide core makes silsesquioxanes ideal materials for a variety of applications. This review covers the structures and synthetic approaches of this type of compounds as well as their properties and potential applications. It focuses on results obtained in the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BET:

Brunauer–Emmett–Teller method for surface area analysis

iPP:

Isotactic polypropylene

MA-POSS:

Methacrylcyclopentyl-POSS

Me8T8 :

Octamethyl-POSS

MEH-PPV:

Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]

OLED:

Organic light-emitting diode

PDA:

1,4-Phenylenediamine

PDMS:

Polydimethylsiloxane

PI:

Polyimide

POF:

Poly(9,9′-dioctylfluorene)

POSS:

Polyhedral oligomeric silsesquioxanes

PP:

Polypropylene

SCP:

Stepwise coupling polymerization

TBAF:

Tetrabutylammonium fluoride

TEOS:

Tetraethylorthosilicate (or tetraethoxysilane)

TDSS:

Tetrakisdimethylsiloxysilane

References

  1. Scott DW (1946) Thermal rearrangement of branched-chain methylpolysiloxanes. J Am Chem Soc 68:356–358

    Article  CAS  Google Scholar 

  2. Barry AJ, Daudt WH, Domicone JJ, Gilkey JW (1955) Crystalline organosilsesquioxanes. J Am Chem Soc 77(16):4248–4252. doi:10.1021/Ja01621a025

    Google Scholar 

  3. Mikhail G, Voronkov V (1982) Polyhedral oligosilsesquioxanes and their homo derivatives. Top Curr Chem 102:199–236

    Google Scholar 

  4. Bassindale AR, Chen HP, Liu ZH, MacKinnon LA, Parker DJ, Taylor PG, Yang YX, Light ME, Horton PN, Hursthouse MB (2004) A higher yielding route to octasilsesquioxane cages using tetrabutylammonium fluoride, part 2: further synthetic advances, mechanistic investigations and X-ray crystal structure studies into the factors that determine cage geometry in the solid state. J Organomet Chem 689(21):3287–3300. doi:10.1016/j.jorganchem.2004.06.063

    Article  CAS  Google Scholar 

  5. Bassindale AR, Liu Z, MacKinnon IA, Taylor PG, Yang Y, Light ME, Horton PN, Hursthouse MB (2003) A higher yielding route for T8 silsesquioxane cages and X-ray crystal structures of some novel spherosilicates. Dalton Trans (14):2945. doi:10.1039/b302950f

  6. Bassindale AR, Parker DJ, Pourny M, Taylor PG, Horton PN, Hursthouse MB (2004) Fluoride ion entrapment in octasilsesquioxane cages as models for ion entrapment in zeolites. Further examples, X-ray crystal structure studies, and investigations into how and why they may be formed. Organometallics 23(19):4400–4405. doi:10.1021/Om049928g

    Article  CAS  Google Scholar 

  7. Bassindale AR, Pourny M, Taylor PG, Hursthouse MB, Light ME (2003) Fluoride-ion encapsulation within a silsesquioxane cage. Angew Chem Int Ed 42(30):3488–3490. doi:10.1002/anie.200351249

    Article  CAS  Google Scholar 

  8. Anderson SE, Bodzin DJ, Haddad TS, Boatz JA, Mabry JM, Mitchell C, Bowers MT (2008) Structural investigation of encapsulated fluoride in polyhedral oligomeric silsesquioxane cages using ion mobility mass spectrometry and molecular mechanics. Chem Mater 20(13):4299–4309. doi:10.1021/cm800058z

    Article  CAS  Google Scholar 

  9. Carroll JB, Frankamp BL, Rotello VM (2002) Self-assembly of gold nanoparticles through tandem hydrogen bonding and polyoligosilsesquioxane (POSS)-POSS recognition processes. Chem Commun (Cambridge) (17):1892–1893. doi:10.1039/b203771h

  10. Carroll JB, Frankamp BL, Srivastava S, Rotello VM (2004) Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. J Mater Chem 14(4):690–694. doi:10.1039/b311423f

    Article  CAS  Google Scholar 

  11. Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics 10(7):2526–2528

    Article  CAS  Google Scholar 

  12. Feher FJ, Newman DA, Walzer JF (1989) Silsesquioxanes as models for silica surfaces. J Am Chem Soc 111(5):1741–1748. doi:10.1021/Ja00187a028

    Google Scholar 

  13. Lichtenhan JD (1995) Polyhedral oligomeric silsesquioxanes – building-blocks for silsesquioxane-based polymers and hybrid materials. Comments Inorg Chem 17(2):115–130. doi:10.1080/02603599508035785

  14. Carniato F, Boccaleri E, Marchese L (2008) A versatile route to bifunctionalized silsesquioxane (POSS): synthesis and characterisation of Ti-containing aminopropylisobutyl-POSS. Dalton Trans 1:36–39. doi:10.1039/b715664m

    Article  Google Scholar 

  15. Carniato F, Fina A, Tabuani D, Boccaleri E (2008) Polypropylene containing Ti- and Al-polyhedral oligomeric silsesquioxanes: crystallization process and thermal properties. Nanotechnology 19(47):475701/475701–475701/475709. doi:10.1088/0957-4484/19/47/475701

  16. Lee A, Xiao J, Feher FJ (2005) New approach in the synthesis of hybrid polymers grafted with polyhedral oligomeric silsesquioxane and their physical and viscoelastic properties. Macromolecules 38(2):438–444. doi:10.1021/ma047892y

    Article  CAS  Google Scholar 

  17. Ramirez SM, Diaz YJ, Campos R, Stone RL, Haddad TS, Mabry JM (2011) Incompletely condensed fluoroalkyl silsesquioxanes and derivatives: precursors for low surface energy materials. J Am Chem Soc 133(50):20084–20087. doi:10.1021/ja208506v

    Article  CAS  Google Scholar 

  18. Agaskar PA (1991) New synthetic route to the hydridospherosiloxanes Oh-H8si8o12 and D5h-H10si10o15. Inorg Chem 30(13):2707–2708. doi:10.1021/Ic00013a002

    Google Scholar 

  19. Harrison PG, Hall C (1997) Preparation and characterization of octasilsesquioxane cage monomers. Main Group Met Chem 20(8):515–530. doi:10.1515/MGMC.1997.20.8.515

    Article  CAS  Google Scholar 

  20. Dare EO, Olatunji GA, Ogunniyi DS (2004) Organic-inorganic hybrid material. I. Synthesis, characterization, and thermal property of a novel polyhedral cubic silsesquioxane. J Appl Polym Sci 93(2):907–910. doi:10.1002/app.20530

    Article  CAS  Google Scholar 

  21. Jaffres P-A, Morris RE (1998) Synthesis of highly functionalized dendrimers based on polyhedral silsesquioxane cores. J Chem Soc Dalton Trans 16:2767–2770

    Article  Google Scholar 

  22. Shanmugam N, Lee K-T, Cheng W-Y, Lu S-Y (2012) Organic-inorganic hybrid polyaspartamide involving polyhedral oligomeric silsesquioxane via Michael addition for CO2 capture. J Polym Sci A Polym Chem 50(13):2521–2526. doi:10.1002/pola.26047

    Google Scholar 

  23. Brick CM, Ouchi Y, Chujo Y, Laine RM (2005) Robust polyaromatic octasilsesquioxanes from polybromophenylsilsesquioxanes, BrxOPS, via Suzuki coupling. Macromolecules 38(11):4661–4665. doi:10.1021/Ma0501141

    Article  CAS  Google Scholar 

  24. Brick CM, Tamaki R, Kim SG, Asuncion MZ, Roll M, Nemoto T, Ouchi Y, Chujo Y, Laine RA (2005) Spherical, polyfunctional molecules using poly(bromophenylsilsesquioxane)s as nanoconstruction sites. Macromolecules 38(11):4655–4660. doi:10.1021/Ma473014

    Article  CAS  Google Scholar 

  25. Wang Z, Leng S, Wang Z, Li G, Yu H (2011) Nanostructured organic-inorganic copolymer networks based on polymethacrylate-functionalized octaphenylsilsesquioxane and methyl methacrylate: synthesis and characterization. Macromolecules (Washington) 44(3):566–574. doi:10.1021/ma102047m

    Article  CAS  Google Scholar 

  26. Wang Z, Yu H, Zhao L, Qu J (2012) Controlled network structure and its correlations with physical properties of polycarboxyl octaphenylsilsesquioxanes-based inorganic–organic polymer nanocomposites. RSC Adv 2(7):2759–2767. doi:10.1039/c2ra00021k

    Article  CAS  Google Scholar 

  27. Brown JF, Vogt LH, Katchman A, Eustance JW, Kiser KM, Krantz KW (1960) Double chain polymers of phenylsilsesquioxane. J Am Chem Soc 82(23):6194–6195. doi:10.1021/ja01508a054

    Article  CAS  Google Scholar 

  28. Andrianov KA, Zhdanov AA, Levin VY (1978) Some physical-properties of organosilicon ladder polymers. Annu Rev Mater Sci 8:313–326. doi:10.1146/annurev.ms.08.080178.001525

    Google Scholar 

  29. Xie P, Zhang RB (1997) Functionalization and application of ladder-like polysilsesquioxanes. Polym Advan Technol 8(11):649–656. doi:10.1002/(Sici)1099-1581(199711)8:11<649::Aid-Pat696>3.0.Co;2-H

  30. Zhou QL, Yan SK, Han CC, Xie P, Zhang RB (2008) Promising functional materials based on ladder polysiloxanes. Adv Mater 20(15):2970–2976. doi:10.1002/adma.200800580

    Google Scholar 

  31. Duan Q, Zhang Y, Jiang J, Deng K, Zhang T, Xie P, Zhang R, Fu P (2004) Synthesis and characterization of ethoxy-terminated ladder-like polymethylsilsesquioxane oligomer. Polym Int 53(1):113–120. doi:10.1002/pi.1415

    Article  CAS  Google Scholar 

  32. Zhang RB, Dai DR, Cui L, Xu H, Liu CQ, Xie P (1999) A glance at the relation of stepwise coupling polymerization to supramolecular chemistry. Mat Sci Eng C-Bio S 10(1–2):13–18. doi:10.1016/S0928-4931(99)00099-5

    Google Scholar 

  33. Zhang Z-X, Hao J, Xie P, Zhang X, Han CC, Zhang R (2008) A well-defined ladder polyphenylsilsesquioxane (Ph-LPSQ) synthesized via a new three-step approach: monomer self-organization-lyophilization-surface-confined polycondensation. Chem Mater 20(4):1322–1330. doi:10.1021/cm071602l

    Article  CAS  Google Scholar 

  34. Zhang X, Xie P, Shen Z, Jiang J, Zhu C, Li H, Zhang T, Han CC, Wan L, Yan S, Zhang R (2006) Confined synthesis of a cis-isotactic ladder polysilsesquioxane by using a π-stacking and H-bonding superstructure. Angew Chem Int Ed 45(19):3112–3116. doi:10.1002/anie.200504474

    Article  CAS  Google Scholar 

  35. Chen Z, Li Z, Guo H, Zhang J, Ren Z, Yan S, Xie P, Zhang R (2012) Supramolecular template-directed synthesis of soluble quadruple-chain ladder polyphenylsiloxane (Ph-QCLP) with high molecular weight. Chem Mater 24(10):1968–1973. doi:10.1021/cm300951x

    Article  CAS  Google Scholar 

  36. Chang S, Matsumoto T, Matsumoto H, Unno M (2010) Synthesis and characterization of heptacyclic laddersiloxanes and ladder polysilsesquioxane. Appl Organomet Chem 24(3):241–246. doi:10.1002/aoc.1607

    Article  CAS  Google Scholar 

  37. Shea KJ, Loy DA (2001) Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials. Chem Mater 13(10):3306–3319. doi:10.1021/cm011074s

    Article  CAS  Google Scholar 

  38. Hu L-C, Shea KJ (2011) Organo–silica hybrid functional nanomaterials: how do organic bridging groups and silsesquioxane moieties work hand-in-hand? Chem Soc Rev 40(2):688–695. doi:10.1039/c0cs00219d

    Article  CAS  Google Scholar 

  39. Hunks WJ, Ozin GA (2005) Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs). J Mater Chem 15(35–36):3716–3724. doi:10.1039/b504511h

    Article  CAS  Google Scholar 

  40. Blanc F, Chabanas M, Coperet C, Fenet B, Herdtweck E (2005) Reactivity differences between molecular and surface silanols in the preparation of homogeneous and heterogeneous olefin metathesis catalysts. J Organomet Chem 690(23):5014–5026. doi:10.1016/j.jorganchem.2005.04.028

    Article  CAS  Google Scholar 

  41. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev (Washington) 110(4):2081–2173. doi:10.1021/cr900201r

    Article  CAS  Google Scholar 

  42. Duan Y, Jana SC, Reinsel AM, Lama B, Espe MP (2012) Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes. Langmuir 28(43):15362–15371. doi:10.1021/la302945b

    Article  CAS  Google Scholar 

  43. Mabry JM, Vij A, Iacono ST, Viers BD (2008) Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). Angew Chem Int Ed 47(22):4137–4140. doi:10.1002/anie.200705355

    Google Scholar 

  44. Wang H, Xue Y, Ding J, Feng L, Wang X, Lin T (2011) Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew Chem Int Ed 50(48):11433–11436. doi:10.1002/anie.201105069

    Google Scholar 

  45. Daga VK, Anderson ER, Gido SP, Watkins JJ (2011) Hydrogen bond assisted assembly of well-ordered polyhedral oligomeric silsesquioxane-block copolymer composites. Macromolecules (Washington) 44(17):6793–6799. doi:10.1021/ma200926n

    Article  CAS  Google Scholar 

  46. Zhang L, Abbenhuis HCL, Yang Q, Wang Y-M, Magusin PCMM, Mezari B, van SRA, Li C (2007) Mesoporous organic–inorganic hybrid materials built using polyhedral oligomeric silsesquioxane blocks. Angew Chem Int Ed 46(26):5003–5006. doi:10.1002/anie.200700640

  47. Peng Y, Ben T, Xu J, Xue M, Jing X, Deng F, Qiu S, Zhu G (2011) A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties. Dalton Trans 40(12):2720–2724. doi:10.1039/c0dt01268h

    Article  CAS  Google Scholar 

  48. Dong F, Ha C-S (2012) Multifunctional materials based on polysilsesquioxanes. Macromol Res 20(4):335–343. doi:10.1007/s13233-012-0151-x

    Article  CAS  Google Scholar 

  49. Fina A, Monticelli O, Camino G (2010) POSS-based hybrids by melt/reactive blending. J Mater Chem 20(42):9297–9305. doi:10.1039/c0jm00480d

    Article  CAS  Google Scholar 

  50. Bruce X, Fu MYG, Hsiao BS, Phillips S, Viers B, Blanski R, Ruth P (2003) Physical gelation in ethylene – propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer 44(5):1499–1506

    Article  Google Scholar 

  51. Baldi F, Bignotti F, Fina A, Tabuani D, Ricco T (2007) Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends. J Appl Polym Sci 105(2):935–943. doi:10.1002/app.26142

    Article  CAS  Google Scholar 

  52. Chyi-Ming Leu Y-TC, Wei K-H (2003) Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater 15(19):3721–3727

    Article  Google Scholar 

  53. Carroll JB, Waddon AJ, Nakade H, Rotello VM (2003) “Plug and Play” polymers. Thermal and X-ray characterizations of noncovalently grafted polyhedral oligomeric silsesquioxane (POSS) – polystyrene nanocomposites. Macromolecules 36(17):6289–6291

    Article  CAS  Google Scholar 

  54. Leu C-M, Reddy GM, Wei K-H, Shu C-F (2003) Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites. Chem Mater 15(11):2261–2265. doi:10.1021/cm0208408

    Article  CAS  Google Scholar 

  55. Haddad TS, Lichtenhan JD (1996) Hybrid organic–inorganic thermoplastics: Styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 29(22):7302–7304. doi:10.1021/Ma960609d

    Google Scholar 

  56. Kim KM, Keum DK, Chujo Y (2003) Organic–inorganic polymer hybrids using polyoxazoline initiated by functionalized silsesquioxane. Macromolecules 36(3):867–875. doi:10.1021/Ma.021303b

    Google Scholar 

  57. Lichtenhan JD, Otonari YA, Carr MJ (1995) Linear hybrid polymer building-blocks – methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28(24):8435–8437. doi:10.1021/Ma00128a067

    Google Scholar 

  58. Naka K, Itoh H, Chujo Y (2002) Self-organization of spherical aggregates of palladium nanoparticles with a cubic silsesquioxane. Nano Lett 2(11):1183–1186. doi:10.1021/Nl025713p

    Google Scholar 

  59. Wright ME, Schorzman DA, Feher FJ, Jin R-Z (2003) Synthesis and thermal curing of aryl-ethynyl-terminatedcoPOSS imide oligomers: new inorganic/organic hybrid resins. Chem Mater 15(1):264–268. doi:10.1021/cm020238h

    Article  CAS  Google Scholar 

  60. Xu H, Kuo S-W, Lee J-S, Chang F-C (2002) Preparations, thermal properties, and Tg increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxanes. Macromolecules 35(23):8788–8793. doi:10.1021/ma0202843

    Article  CAS  Google Scholar 

  61. Xu H, Kuo S-W, Lee J-S, Chang F-C (2002) Glass transition temperatures of poly(hydroxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes). Polymer 43(19):5117–5124. doi:10.1016/s0032-3861(02)00402-0

    Article  CAS  Google Scholar 

  62. Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci 8(1):21–29. doi:10.1016/j.cossms.2004.03.002

    Article  CAS  Google Scholar 

  63. Brus J, Urbanova M, Strachota A (2008) Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes: structure and segmental dynamics as studied by solid-state NMR. Macromolecules (Washington) 41(2):372–386. doi:10.1021/ma702140g

    Article  CAS  Google Scholar 

  64. Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD (1999) Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 32(4):1194–1203. doi:10.1021/Ma981210n

    Google Scholar 

  65. Kopesky ET, Haddad TS, Cohen RE, McKinley GH (2004) Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 37(24):8992–9004. doi:10.1021/ma048934l

    Article  CAS  Google Scholar 

  66. Soong SY, Cohen RE, Boyce MC (2007) Polyhedral oligomeric silsesquioxane as a novel plasticizer for poly(vinyl chloride). Polymer 48(5):1410–1418. doi:10.1016/j.polymer.2007.01.021

    Article  CAS  Google Scholar 

  67. Chen J-H, Chiou Y-D (2006) Crystallization behavior and morphological development of isotactic polypropylene blended with nanostructured polyhedral oligomeric silsesquioxane molecules. J Polym Sci B Polym Phys 44(15):2122–2134. doi:10.1002/polb.20878

    Article  CAS  Google Scholar 

  68. Chen J-H, Yao B-X, Su W-B, Yang Y-B (2007) Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer 48(6):1756–1769. doi:10.1016/j.polymer.2007.01.010

    Article  CAS  Google Scholar 

  69. Abad MJ, Barral L, Fasce DP, Williams RJJ (2003) Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS). Macromolecules 36(9):3128–3135. doi:10.1021/ma021539f

    Article  CAS  Google Scholar 

  70. Bizet S, Galy J, Gerard J-F (2006) Molecular dynamics simulation of organic–inorganic copolymers based on methacryl-POSS and methyl methacrylate. Polymer 47(24):8219–8227. doi:10.1016/j.polymer.2006.09.040

    Article  CAS  Google Scholar 

  71. Baumann TF, Jones TV, Wilson T, Saab AP, Maxwell RS (2009) Synthesis and characterization of novel PDMS nanocomposites using POSS derivatives as cross-linking filler. J Polym Sci A Polym Chem 47(10):2589–2596. doi:10.1002/pola.23344

    Article  CAS  Google Scholar 

  72. Cai HL, Xu K, Liu H, Liu X, Fu ZE, Chen MC (2011) Influence of polyhedral oligomeric silsesquioxanes on thermal and mechanical properties of polycarbonate/POSS hybrid composites. Polym Compos 32(9):1343–1351. doi:10.1002/pc.21156

    Article  CAS  Google Scholar 

  73. Constable GS, Lesser AJ, Coughlin EB (2004) Morphological and mechanical evaluation of hybrid organic-inorganic thermoset copolymers of dicyclopentadiene and mono- or tris(norbornenyl)-substituted polyhedral oligomeric silsesquioxanes. Macromolecules 37(4):1276–1282. doi:10.1021/ma034989w

    Article  CAS  Google Scholar 

  74. Durmus A, Kasgoz A, Ercan N, Akin D, Sanli S (2012) Effect of polyhedral oligomeric silsesquioxane (POSS) reinforced polypropylene (PP) nanocomposite on the microstructure and isothermal crystallization kinetics of polyoxymethylene (POM). Polymer 53(23):5347–5357. doi:10.1016/j.polymer.2012.09.026

    Article  CAS  Google Scholar 

  75. Baklanov MR, Maex K (2006) Porous low dielectric constant materials for microelectronics. Philos Trans R Soc London Ser A 364(1838):201–215. doi:10.1098/rsta.2005.1679

    Google Scholar 

  76. Harrison PG, Kannengiesser R (1996) Chem Commun 415

    Google Scholar 

  77. Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AF (1998) J Am Chem Soc 120:8380

    Article  CAS  Google Scholar 

  78. Chen Y, Chen L, Nie H, Kang ET (2006) Low-κ nanocomposite films based on polyimides with grafted polyhedral oligomeric silsesquioxane. J Appl Polym Sci 99(5):2226–2232. doi:10.1002/app.22515

    Article  CAS  Google Scholar 

  79. Liu Y-L, Fangchiang M-H (2009) Polyhedral oligomeric silsesquioxane nanocomposites exhibiting ultra-low dielectric constants through POSS orientation into lamellar structures. J Mater Chem 19(22):3643–3647. doi:10.1039/b900141g

    Article  CAS  Google Scholar 

  80. Xu Y, Zhu X, Yang S (2009) Crack-free 3D hybrid microstructures from photosensitive organosilicates as versatile photonic templates. ACS Nano 3(10):3251–3259. doi:10.1021/nn9007803

    Article  CAS  Google Scholar 

  81. Liang G, Zhu X, Xu Y, Li J, Yang S (2010) Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure. Adv Mater (Weinheim) 22(40):4524–4529. doi:10.1002/adma.201001785

    Article  CAS  Google Scholar 

  82. Moon JH, Seo JS, Xu Y, Yang S (2009) Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 19(27):4687–4691. doi:10.1039/b901226e

    Article  CAS  Google Scholar 

  83. Li J, Liang G, Zhu X, Yang S (2012) Exploiting nanoroughness on holographically patterned three-dimensional photonic crystals. Adv Funct Mater 22(14):2980–2986. doi:10.1002/adfm.201200013

    Google Scholar 

  84. Chan KL, Sonar P, Sellinger A (2009) Cubic silsesquioxanes for use in solution processable organic light emitting diodes (OLED). J Mater Chem 19(48):9103–9120. doi:10.1039/b909234j

    Article  CAS  Google Scholar 

  85. Xiao S, Nguyen M, Gong X, Cao Y, Wu H, Moses D, Heeger AJ (2003) Stabilization of semiconducting polymers with silsesquioxane. Adv Funct Mater 13(1):25–29. doi:10.1002/adfm.200390000

    Article  CAS  Google Scholar 

  86. Chou CH, Hsu SL, Dinakaran K, Chiu MY, Wei KH (2005) Synthesis and characterization of luminescent polyfluorenes incorporating side-chain-tethered polyhedral oligomeric silsesquioxane units. Macromolecules 38(3):745–751. doi:10.1021/Ma0479520

    Google Scholar 

  87. Chu Y-L, Cheng C-C, Chen Y-P, Yen Y-C, Chang F-C (2012) A new supramolecular POSS electroluminescent material. J Mater Chem 22(18):9285–9292. doi:10.1039/c2jm00095d

    Article  CAS  Google Scholar 

  88. Choi S-S, Lee HS, Hwang SS, Choi DH, Baek K-Y (2010) High photo- and electroluminescence efficiencies of ladder-like structured polysilsesquioxane with carbazole groups. J Mater Chem 20(44):9852–9854. doi:10.1039/c0jm02561e

    Article  CAS  Google Scholar 

  89. Yang X, Froehlich JD, Chae HS, Harding BT, Li S, Mochizuki A, Jabbour GE (2010) Efficient light-emitting devices based on platinum-complexes-anchored polyhedral oligomeric silsesquioxane materials. Chem Mater 22(16):4776–4782. doi:10.1021/cm101314b

    Article  CAS  Google Scholar 

  90. Ren Z, Chen Z, Fu W, Zhang R, Shen F, Wang F, Ma Y, Yan S (2011) Ladder polysilsesquioxane for wide-band semiconductors: synthesis, optical properties and doped electrophosphorescent device. J Mater Chem 21(30):11306–11311. doi:10.1039/c1jm11087j

    Article  CAS  Google Scholar 

  91. Ren Z, Sun D, Li H, Fu Q, Ma D, Zhang J, Yan S (2012) Synthesis of dibenzothiophene-containing ladder polysilsesquioxane as a blue phosphorescent host material. Chem Eur J 18(13):4115–4123. doi:10.1002/chem.201103684

    Google Scholar 

  92. Duchateau R (2002) Incompletely condensed silsesquioxanes: versatile tools in developing silica-supported olefin polymerization catalysts. Chem Rev 102(10):3525–3542. doi:10.1021/cr010386b

    Article  CAS  Google Scholar 

  93. Quadrelli EA, Basset J-M (2010) On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis. Coord Chem Rev 254(5–6):707–728. doi:10.1016/j.ccr.2009.09.031

    Article  CAS  Google Scholar 

  94. Cho HM, Weissman H, Wilson SR, Moore JS (2006) A Mo(VI) alkylidyne complex with polyhedral oligomeric silsesquioxane ligands: homogeneous analogue of a silica-supported alkyne metathesis catalyst. J Am Chem Soc 128(46):14742–14743. doi:10.1021/ja065101x

    Article  CAS  Google Scholar 

  95. Vautravers NR, Cole-Hamilton DJ (2009) Diazaphospholidine terminated polyhedral oligomeric silsesquioxanes in the hydroformylation of vinyl acetate. Chem Commun (Cambridge) (1):92–94. doi:10.1039/b814582b

  96. Janssen M, Wilting J, Mueller C, Vogt D (2010) Continuous rhodium-catalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angew Chem Int Ed 49(42):7738–7741. doi:10.1002/anie.201001926

    Google Scholar 

  97. Tang S, Jin R, Zhang H, Yao H, Zhuang J, Liu G, Li H (2012) Recoverable organorhodium-functionalized polyhedral oligomeric silsesquioxane: a bifunctional heterogeneous catalyst for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium. Chem Commun (Cambridge) 48(50):6286–6288. doi:10.1039/c2cc31927f

    Article  CAS  Google Scholar 

  98. McCusker C, Carroll JB, Rotello VM (2005) Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes. Chem Commun (Cambridge) (8):996–998. doi:10.1039/b416266h

  99. Ding D, Pu K-Y, Li K, Liu B (2011) Conjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane loaded pH-responsive nanoparticles for targeted fluorescence imaging of cancer cell nucleus. Chem Commun (Cambridge) 47(35):9837–9839. doi:10.1039/c1cc13237g

    Article  CAS  Google Scholar 

  100. Li K, Liu Y-T, Pu K-Y, Feng S-S, Zhan R-Y, Liu B (2011) Polyhedral oligomeric silsesquioxanes-containing conjugated polymer loaded PLGA nanoparticles with trastuzumab (Herceptin) functionalization for HER2-positive cancer cell detection. Adv Funct Mater 21(2):287–294. doi:10.1002/adfm.201001435

    Article  CAS  Google Scholar 

  101. Wu X, Sun Y, Xie W, Liu Y, Song X (2010) Development of novel dental nanocomposites reinforced with polyhedral oligomeric silsesquioxane (POSS). Dent Mater 26(5):456–462. doi:10.1016/j.dental.2009.11.161

    Article  CAS  Google Scholar 

  102. Ghanbari H, de MA, Seifalian AM (2011) Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons. Int J Nanomed 6:775–786. doi:10.2147/IJN.S14881

  103. Bakhshi R, Darbyshire A, Evans JE, You Z, Lu J, Seifalian AM (2011) Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer. Colloids Surf B 86(1):93–105. doi:10.1016/j.colsurfb.2011.03.024

    Article  CAS  Google Scholar 

  104. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15(1–2):31–49. doi:10.1016/S0169-1317(99)00019-8

  105. Devaux E, Bourbigot S, El Achari A (2002) Crystallization behavior of PA-6 clay nanocomposite hybrid. J Appl Polym Sci 86:2416. doi:10.1002/app.10920

    Article  CAS  Google Scholar 

  106. Jash P, Wilkie CA (2005) Effects of surfactants on the thermal and fire properties of poly(methyl methacrylate)/clay nanocomposites. Polym Degrad Stab 88(3):401–406. doi:10.1016/j.polymdegradstab.2004.12.004

  107. Bourbigot S, Duquesne S, Jama C (2006) Polymer nanocomposites: how to reach low flammability? Macromol Symp (Fillers, Filled Polymers and Polymer Blends) 233:180–190. doi:10.1002/masy.200690016

  108. Qian Y, Wei P, Zhao X, Jiang P, Yu H (2013) Flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane nanocomposites. Fire Mater 37(1):1–16. doi:10.1002/fam.1126

    Article  CAS  Google Scholar 

  109. Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS–Siloxane copolymers. Chem Mater 8(6):1250–1259. doi:10.1021/cm950536x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kickelbick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kickelbick, G. (2013). Silsesquioxanes. In: Scheschkewitz, D. (eds) Functional Molecular Silicon Compounds I. Structure and Bonding, vol 155. Springer, Cham. https://doi.org/10.1007/430_2013_108

Download citation

Publish with us

Policies and ethics