Skip to main content

Advertisement

Log in

Brain regions susceptible to alpha-synuclein spreading

  • Review Article
  • Published:
Molecular Psychiatry Submit manuscript

Abstract

The spreading of misfolded alpha-synuclein (α-syn) protein has been observed in animal models of Parkinson’s disease (PD) and other α-synucleinopathies that mimic human PD pathologies. In animal models, the spreading of α-syn has been associated with motor dysfunction and neuronal death. However, variability in both susceptible brain regions and cellular populations limits our understanding of the consequences of α-syn spreading and the development of associated therapies. Here, we have reviewed the physiological and pathological functions of α-syn and summarized the susceptible brain regions and cell types identified from human postmortem studies and exogenous α-syn injection-based animal models. We have reviewed the methods for inducing α-syn aggregation, the specific hosts, the inoculation sites, the routes of propagation, and other experimental settings that may affect the spreading pattern of α-syn, as reported in current studies. Understanding the spread of α-syn to produce a consistent PD animal model is vital for future drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic diagrams illustrating the neuropathological staging systems for α-synucleinopathies.
Fig. 2: The selectivity of brain areas for α-syn pathology in exogenous α-syn injection-based animal models is affected by the inoculation site and route.

Similar content being viewed by others

References

  1. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.

    Article  CAS  PubMed  Google Scholar 

  2. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.

    Article  CAS  PubMed  Google Scholar 

  3. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18:106–8.

    Article  CAS  PubMed  Google Scholar 

  4. Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, et al. Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci USA. 2013;110:19555–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamasaki TR, Holmes BB, Furman JL, Dhavale DD, Su BW, Song ES, et al. Parkinson’s disease and multiple system atrophy have distinct alpha-synuclein seed characteristics. J Biol Chem. 2019;294:1045–58.

    Article  CAS  PubMed  Google Scholar 

  6. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  7. Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988;8:2804–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tofaris GK, Spillantini MG. Physiological and pathological properties of alpha-synuclein. Cell Mol Life Sci. 2007;64:2194–201.

    Article  CAS  PubMed  Google Scholar 

  9. Yamada H, Mizuno S, Honda S, Takahashi D, Sakane F. Characterization of alpha-synuclein N-terminal domain as a novel cellular phosphatidic acid sensor. FEBS J. 2020;287:2212–34.

    Article  CAS  PubMed  Google Scholar 

  10. Park SM, Jung HY, Kim TD, Park JH, Yang CH, Kim J. Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of alpha-synuclein, a molecular chaperone. J Biol Chem. 2002;277:28512–20.

    Article  CAS  PubMed  Google Scholar 

  11. Bendor JT, Logan TP, Edwards RH. The function of alpha-synuclein. Neuron. 2013;79:1044–66.

    Article  CAS  PubMed  Google Scholar 

  12. Guan Y, Zhao X, Liu F, Yan S, Wang Y, Du C, et al. Pathogenic mutations differentially regulate cell-to-cell transmission of alpha-synuclein. Front Cell Neurosci. 2020;14:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Visanji NP, Wislet-Gendebien S, Oschipok LW, Zhang G, Aubert I, Fraser PE, et al. Effect of Ser-129 phosphorylation on interaction of alpha-synuclein with synaptic and cellular membranes. J Biol Chem. 2011;286:35863–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kosten J, Binolfi A, Stuiver M, Verzini S, Theillet FX, Bekei B, et al. Efficient modification of alpha-synuclein serine 129 by protein kinase CK1 requires phosphorylation of tyrosine 125 as a priming event. ACS Chem Neurosci. 2014;5:1203–8.

    Article  CAS  PubMed  Google Scholar 

  15. Burre J, Sharma M, Sudhof TC. Cell biology and pathophysiology of alpha-synuclein. Cold Spring Harb Perspect Med. 2018;8:a024091.

  16. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.

    Article  CAS  PubMed  Google Scholar 

  17. McFarland MA, Ellis CE, Markey SP, Nussbaum RL. Proteomics analysis identifies phosphorylation-dependent alpha-synuclein protein interactions. Mol Cell Proteom. 2008;7:2123–37.

    Article  CAS  Google Scholar 

  18. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006;281:29739–52.

    Article  CAS  PubMed  Google Scholar 

  19. Paleologou KE, Oueslati A, Shakked G, Rospigliosi CC, Kim HY, Lamberto GR, et al. Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. J Neurosci. 2010;30:3184–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oueslati A, Paleologou KE, Schneider BL, Aebischer P, Lashuel HA. Mimicking phosphorylation at serine 87 inhibits the aggregation of human alpha-synuclein and protects against its toxicity in a rat model of Parkinson’s disease. J Neurosci. 2012;32:1536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci. 2000;20:3214–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. George JM, Jin H, Woods WS, Clayton DF. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron. 1995;15:361–72.

    Article  CAS  PubMed  Google Scholar 

  23. Durante V, de Iure A, Loffredo V, Vaikath N, De Risi M, Paciotti S, et al. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain. 2019;142:1365–85.

    Article  PubMed  Google Scholar 

  24. Watson JB, Hatami A, David H, Masliah E, Roberts K, Evans CE, et al. Alterations in corticostriatal synaptic plasticity in mice overexpressing human alpha-synuclein. Neuroscience. 2009;159:501–13.

    Article  CAS  PubMed  Google Scholar 

  25. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, et al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 2010;30:6838–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell. 2005;123:383–96.

    Article  CAS  PubMed  Google Scholar 

  27. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329:1663–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ahn BH, Rhim H, Kim SY, Sung YM, Lee MY, Choi JY, et al. alpha-Synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. J Biol Chem. 2002;277:12334–42.

    Article  CAS  PubMed  Google Scholar 

  29. Gorbatyuk OS, Li S, Nguyen FN, Manfredsson FP, Kondrikova G, Sullivan LF, et al. alpha-Synuclein expression in rat substantia nigra suppresses phospholipase D2 toxicity and nigral neurodegeneration. Mol Ther. 2010;18:1758–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen RH, Wislet-Gendebien S, Samuel F, Visanji NP, Zhang G, Marsilio D, et al. alpha-Synuclein membrane association is regulated by the Rab3a recycling machinery and presynaptic activity. J Biol Chem. 2013;288:7438–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ, et al. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet. 1999;22:110–4.

    Article  CAS  PubMed  Google Scholar 

  32. Ribeiro CS, Carneiro K, Ross CA, Menezes JR, Engelender S. Synphilin-1 is developmentally localized to synaptic terminals, and its association with synaptic vesicles is modulated by alpha-synuclein. J Biol Chem. 2002;277:23927–33.

    Article  CAS  PubMed  Google Scholar 

  33. Lee HJ, Khoshaghideh F, Lee S, Lee SJ. Impairment of microtubule-dependent trafficking by overexpression of alpha-synuclein. Eur J Neurosci. 2006;24:3153–62.

    Article  PubMed  Google Scholar 

  34. Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J, Jakes R. alpha-synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem. 1999;274:25481–9.

    Article  CAS  PubMed  Google Scholar 

  35. Qureshi HY, Paudel HK. Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and alpha-synuclein mutations promote Tau protein phosphorylation at Ser262 and destabilize microtubule cytoskeleton in vitro. J Biol Chem. 2011;286:5055–68.

    Article  CAS  PubMed  Google Scholar 

  36. Lei P, Ayton S, Finkelstein DI, Adlard PA, Masters CL, Bush AI. Tau protein: relevance to Parkinson’s disease. Int J Biochem Cell Biol. 2010;42:1775–8.

    Article  CAS  PubMed  Google Scholar 

  37. Zondler L, Miller-Fleming L, Repici M, Goncalves S, Tenreiro S, Rosado-Ramos R, et al. DJ-1 interactions with alpha-synuclein attenuate aggregation and cellular toxicity in models of Parkinson’s disease. Cell Death Dis. 2014;5:e1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, et al. Structural and functional characterization of two alpha-synuclein strains. Nat Commun. 2013;4:2575.

    Article  PubMed  Google Scholar 

  39. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, et al. alpha-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature. 2015;522:340–4.

    Article  CAS  PubMed  Google Scholar 

  40. Ludtmann MH, Angelova PR, Ninkina NN, Gandhi S, Buchman VL, Abramov AY. Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase. J Neurosci. 2016;36:10510–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ludtmann MHR, Angelova PR, Horrocks MH, Choi ML, Rodrigues M, Baev AY, et al. alpha-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun. 2018;9:2293.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Angelova PR, Choi ML, Berezhnov AV, Horrocks MH, Hughes CD, De S, et al. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ. 2020;27:2781–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diogenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, et al. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012;32:11750–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin ZS, Neugebauer V, Dineley KT, Kayed R, Zhang W, Reese LC, et al. alpha-Synuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: relevance to human synucleopathic diseases. J Neurochem. 2012;120:440–52.

    Article  CAS  PubMed  Google Scholar 

  45. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72:57–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong YC, Krainc D. alpha-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahn TB, Kim SY, Kim JY, Park SS, Lee DS, Min HJ, et al. alpha-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology. 2008;70:43–49.

    Article  CAS  PubMed  Google Scholar 

  48. Ibanez P, Lesage S, Janin S, Lohmann E, Durif F, Destee A, et al. Alpha-synuclein gene rearrangements in dominantly inherited parkinsonism: frequency, phenotype, and mechanisms. Arch Neurol. 2009;66:102–8.

    Article  PubMed  Google Scholar 

  49. Flagmeier P, Meisl G, Vendruscolo M, Knowles TP, Dobson CM, Buell AK, et al. Mutations associated with familial Parkinson’s disease alter the initiation and amplification steps of alpha-synuclein aggregation. Proc Natl Acad Sci USA. 2016;113:10328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kasten M, Klein C. The many faces of alpha-synuclein mutations. Mov Disord. 2013;28:697–701.

    Article  PubMed  Google Scholar 

  51. Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord. 2013;28:811–3.

    Article  CAS  PubMed  Google Scholar 

  52. Pasanen P, Myllykangas L, Siitonen M, Raunio A, Kaakkola S, Lyytinen J, et al. Novel alpha-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging. 2014;35:2180 e2181–2185.

    Article  Google Scholar 

  53. Martikainen MH, Paivarinta M, Hietala M, Kaasinen V. Clinical and imaging findings in Parkinson disease associated with the A53E SNCA mutation. Neurol Genet. 2015;1:e27.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Picillo M, Lizarraga KJ, Friesen EL, Chau H, Zhang M, Sato C, et al. Parkinsonism due to A53E alpha-synuclein gene mutation: Clinical, genetic, epigenetic, and biochemical features. Mov Disord. 2018;33:1950–5.

    Article  CAS  PubMed  Google Scholar 

  55. Lesage S, Anheim M, Letournel F, Bousset L, Honore A, Rozas N, et al. G51D alpha-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol. 2013;73:459–71.

    Article  CAS  PubMed  Google Scholar 

  56. Kiely AP, Ling H, Asi YT, Kara E, Proukakis C, Schapira AH, et al. Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Mol Neurodegener. 2015;10:41.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Koros C, Stamelou M, Simitsi A, Beratis I, Papadimitriou D, Papagiannakis N, et al. Selective cognitive impairment and hyposmia in p.A53T SNCA PD vs typical PD. Neurology. 2018;90:e864–e869.

    Article  PubMed  Google Scholar 

  58. Fuchs J, Nilsson C, Kachergus J, Munz M, Larsson EM, Schule B, et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology. 2007;68:916–22.

    Article  CAS  PubMed  Google Scholar 

  59. Seidel K, Schols L, Nuber S, Petrasch-Parwez E, Gierga K, Wszolek Z, et al. First appraisal of brain pathology owing to A30P mutant alpha-synuclein. Ann Neurol. 2010;67:684–9.

    CAS  PubMed  Google Scholar 

  60. Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P, et al. alpha-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 2013;125:753–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Prim. 2017;3:17013.

    Article  PubMed  Google Scholar 

  62. Charvin D, Medori R, Hauser RA, Rascol O. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev Drug Disco. 2018;17:844.

    Article  CAS  Google Scholar 

  63. Xiong H, Tuo QZ, Guo YJ, Lei P. Diagnostics and treatments of iron-related CNS diseases. Adv Exp Med Biol. 2019;1173:179–94.

    Article  CAS  PubMed  Google Scholar 

  64. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.

    Article  CAS  PubMed  Google Scholar 

  65. McGregor MM, Nelson AB. Circuit Mechanisms of Parkinson’s Disease. Neuron. 2019;101:1042–56.

    Article  CAS  PubMed  Google Scholar 

  66. Collier TJ, Kanaan NM, Kordower JHAging. and Parkinson’s disease: Different sides of the same coin? Mov Disord. 2017;32:983–90.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006;396:67–72.

    Article  CAS  PubMed  Google Scholar 

  68. Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol. 2011;122:187–204.

    Article  CAS  PubMed  Google Scholar 

  69. Johansen KK, Torp SH, Farrer MJ, Gustavsson EK, Aasly JO. A case of Parkinson’s disease with no lewy body pathology due to a homozygous exon deletion in Parkin. Case Rep. Neurol Med. 2018;2018:6838965.

    PubMed  PubMed Central  Google Scholar 

  70. Gaig C, Marti MJ, Ezquerra M, Rey MJ, Cardozo A, Tolosa E. G2019S LRRK2 mutation causing Parkinson’s disease without Lewy bodies. J Neurol Neurosurg Psychiatry. 2007;78:626–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Parkkinen L, Pirttila T, Tervahauta M, Alafuzoff I. Widespread and abundant alpha-synuclein pathology in a neurologically unimpaired subject. Neuropathology. 2005;25:304–14.

    Article  PubMed  Google Scholar 

  72. Alegre-Abarrategui J, Brimblecombe KR, Roberts RF, Velentza-Almpani E, Tilley BS, Bengoa-Vergniory N, et al. Selective vulnerability in alpha-synucleinopathies. Acta Neuropathol. 2019;138:681–704.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci. 2017;18:101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hare DJ, Lei P, Ayton S, Roberts BR, Grimm R, George JL, et al. An iron-dopamine index predicts risk of parkinsonian neurodegeneration in the substantia nigra pars compacta. Chem Sci. 2014;5:2160–9.

    Article  CAS  Google Scholar 

  75. Guo Y, Tang X, Zhang J, Jin S, Li J, Ding L, et al. Corticosterone Signaling and a Lateral Habenula-Ventral Tegmental Area Circuit Modulate Compulsive Self-Injurious Behavior in a Rat Model. J Neurosci. 2018;38:5251–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sulzer D, Surmeier DJ. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov Disord. 2013;28:41–50.

    Article  CAS  PubMed  Google Scholar 

  77. Hijaz BA, Volpicelli-Daley LA. Initiation and propagation of alpha-synuclein aggregation in the nervous system. Mol Neurodegener. 2020;15:19.

    Article  PubMed  Google Scholar 

  78. Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA. 1987;84:5976–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Henderson JM, Carpenter K, Cartwright H, Halliday GM. Degeneration of the centre median-parafascicular complex in Parkinson’s disease. Ann Neurol. 2000;47:345–52.

    Article  CAS  PubMed  Google Scholar 

  80. Harding AJ, Stimson E, Henderson JM, Halliday GM. Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain. 2002;125:2431–45.

    Article  PubMed  Google Scholar 

  81. Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, et al. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener. 2019;14:5.

    Article  PubMed  PubMed Central  Google Scholar 

  82. McCann H, Stevens CH, Cartwright H, Halliday GM. alpha-Synucleinopathy phenotypes. Parkinsonism Relat Disord. 2014;20:S62–67.

    Article  PubMed  Google Scholar 

  83. Chouliaras L, Kumar GS, Thomas AJ, Lunnon K, Chinnery PF, O’Brien JT. Epigenetic regulation in the pathophysiology of lewy body dementia. Prog Neurobiol. 2020;192:101822.

  84. Peng C, Gathagan RJ, Lee VM. Distinct alpha-Synuclein strains and implications for heterogeneity among alpha-Synucleinopathies. Neurobiol Dis. 2018;109:209–18.

    Article  CAS  PubMed  Google Scholar 

  85. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89:88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White Iii CL, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wenning GK, Colosimo C, Geser F, Poewe W. Multiple system atrophy. Lancet Neurol. 2004;3:93–103.

    Article  PubMed  Google Scholar 

  88. Shahnawaz M, Mukherjee A, Pritzkow S, Mendez N, Rabadia P, Liu X, et al. Discriminating alpha-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature. 2020;578:273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schweighauser M, Shi Y, tarutani A, Kametani F, Murzin A, Ghetti B, et al. Structures of α-synuclein filaments from multiple system atrophy. Nature. 2020;585:464–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brettschneider J, Suh E, Robinson JL, Fang L, Lee EB, Irwin DJ, et al. Converging Patterns of alpha-Synuclein Pathology in Multiple System Atrophy. J Neuropathol Exp Neurol. 2018;77:1005–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cykowski MD, Coon EA, Powell SZ, Jenkins SM, Benarroch EE, Low PA, et al. Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain. 2015;138:2293–309.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909.

    Article  CAS  PubMed  Google Scholar 

  93. Jiang P, Dickson DW. Parkinson’s disease: experimental models and reality. Acta Neuropathol. 2018;135:13–32.

    Article  CAS  PubMed  Google Scholar 

  94. Beal MF. Experimental models of Parkinson’s disease. Nat Rev Neurosci. 2001;2:325–34.

    Article  CAS  PubMed  Google Scholar 

  95. Meredith GE, Rademacher DJ. MPTP mouse models of Parkinson’s disease: an update. J Parkinsons Dis. 2011;1:19–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zeng XS, Geng WS, Jia JJ. Neurotoxin-induced animal models of parkinson disease: pathogenic mechanism and assessment. ASN Neuro. 2018;10:1759091418777438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. Evaluation of Models of Parkinson’s Disease. Front Neurosci. 2015;9:503.

    PubMed  Google Scholar 

  98. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66:646–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Koprich JB, Kalia LV, Brotchie JM. Animal models of alpha-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci. 2017;18:515–29.

    Article  CAS  PubMed  Google Scholar 

  100. Ulusoy A, Decressac M, Kirik D, Björklund A. Viral vector-mediated overexpression of α-synuclein as a progressive model of Parkinson’s disease. Prog Brain Res. 2010;184:89–111.

    Article  CAS  PubMed  Google Scholar 

  101. Gomez-Benito M, Granado N, Garcia-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharm. 2020;11:356.

    Article  CAS  Google Scholar 

  102. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338:949–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM. Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med. 2012;209:975–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, et al. Transneuronal Propagation of Pathologic alpha-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron. 2019;103:627–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Van Den Berge N, Ferreira N, Gram H, Mikkelsen TW, Alstrup AKO, Casadei N, et al. Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol. 2019;138:535–50.

    Article  Google Scholar 

  106. Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, et al. Prion-like spreading of pathological alpha-synuclein in brain. Brain. 2013;136:1128–38.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chu Y, Muller S, Tavares A, Barret O, Alagille D, Seibyl J, et al. Intrastriatal alpha-synuclein fibrils in monkeys: spreading, imaging and neuropathological changes. Brain. 2019;142:3565–79.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lohmann S, Bernis ME, Tachu BJ, Ziemski A, Grigoletto J, Tamguney G. Oral and intravenous transmission of alpha-synuclein fibrils to mice. Acta Neuropathol. 2019;138:515–33.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shimozawa A, Ono M, Takahara D, Tarutani A, Imura S, Masuda-Suzukake M, et al. Propagation of pathological alpha-synuclein in marmoset brain. Acta Neuropathol Commun. 2017;5:12.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014;128:805–20.

    Article  PubMed  Google Scholar 

  111. Sacino AN, Brooks M, Thomas MA, McKinney AB, Lee S, Regenhardt RW, et al. Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci USA. 2014;111:10732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ahn EH, Kang SS, Liu X, Chen G, Zhang Z, Chandrasekharan B, et al. Initiation of Parkinson’s disease from gut to brain by delta-secretase. Cell Res. 2020;30:70–87.

    Article  PubMed  Google Scholar 

  113. Challis C, Hori A, Sampson TR, Yoo BB, Challis RC, Hamilton AM, et al. Gut-seeded alpha-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat Neurosci. 2020;23:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Uemura N, Yagi H, Uemura MT, Hatanaka Y, Yamakado H, Takahashi R. Inoculation of alpha-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol Neurodegener. 2018;13:21.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Arotcarena ML, Dovero S, Prigent A, Bourdenx M, Camus S, Porras G, et al. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain. 2020;143:1462–75.

    Article  PubMed  Google Scholar 

  116. Wu Q, Shaikh MA, Meymand ES, Zhang B, Luk KC, Trojanowski JQ, et al. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathologica. 2020;140:831–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bieri G, Brahic M, Bousset L, Couthouis J, Kramer NJ, Ma R, et al. LRRK2 modifies alpha-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137:961–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yamada K, Iwatsubo T. Extracellular α-synuclein levels are regulated by neuronal activity. Mol Neurodegener. 2018;13:9.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lau A, So RWL, Lau HHC, Sang JC, Ruiz-Riquelme A, Fleck SC, et al. alpha-Synuclein strains target distinct brain regions and cell types. Nat Neurosci. 2019;23:21–31.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rey NL, Bousset L, George S, Madaj Z, Meyerdirk L, Schulz E, et al. alpha-Synuclein conformational strains spread, seed and target neuronal cells differentially after injection into the olfactory bulb. Acta Neuropathol Commun. 2019;7:221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li W, Lesuisse C, Xu Y, Troncoso JC, Price DL, Lee MK. Stabilization of alpha-synuclein protein with aging and familial parkinson’s disease-linked A53T mutation. J Neurosci. 2004;24:7400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mak SK, McCormack AL, Langston JW, Kordower JH, Di Monte DA. Decreased alpha-synuclein expression in the aging mouse substantia nigra. Exp Neurol. 2009;220:359–65.

    Article  CAS  PubMed  Google Scholar 

  123. McCormack AL, Mak SK, Di Monte DA. Increased alpha-synuclein phosphorylation and nitration in the aging primate substantia nigra. Cell Death Dis. 2012;3:e315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 2018;27:1176–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Van Den Berge N, Ferreira N, Mikkelsen TW, Alstrup AKO, Tamguney G, Karlsson P, et al. Ageing promotes pathological alpha-synuclein propagation and autonomic dysfunction in wild-type rats. Brain. 2021;144:1853–68.

    Article  Google Scholar 

  126. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, et al. Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. 2006;26:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lin X, Parisiadou L, Sgobio C, Liu G, Yu J, Sun L, et al. Conditional expression of Parkinson’s disease-related mutant alpha-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J Neurosci. 2012;32:9248–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang JY, Zhuang QQ, Zhu LB, Zhu H, Li T, Li R, et al. Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep. 2016;6:36669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, et al. Region-specific disturbed iron distribution in early idiopathic Parkinson’s disease measured by quantitative susceptibility mapping. Hum Brain Mapp. 2015;36:4407–20.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Martin-Bastida A, Lao-Kaim NP, Loane C, Politis M, Roussakis AA, Valle-Guzman N, et al. Motor associations of iron accumulation in deep grey matter nuclei in Parkinson’s disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility. Eur J Neurol. 2017;24:357–65.

    Article  CAS  PubMed  Google Scholar 

  131. Castellani RJ, Siedlak SL, Perry G, Smith MA. Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol. 2000;100:111–4.

    Article  CAS  PubMed  Google Scholar 

  132. Peng Y, Wang C, Xu HH, Liu YN, Zhou F. Binding of alpha-synuclein with Fe(III) and with Fe(II) and biological implications of the resultant complexes. J Inorg Biochem. 2010;104:365–70.

    Article  CAS  PubMed  Google Scholar 

  133. Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B. Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. J Biol Chem. 2002;277:16116–23.

    Article  CAS  PubMed  Google Scholar 

  134. Turnbull S, Tabner BJ, El-Agnaf OM, Moore S, Davies Y, Allsop D. alpha-Synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radic Biol Med. 2001;30:1163–70.

    Article  CAS  PubMed  Google Scholar 

  135. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5:863–73.

    Article  CAS  PubMed  Google Scholar 

  136. Ayton S, Lei P. Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration. Biomed Res Int. 2014;2014:581256.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med. 2012;18:291–5.

    Article  CAS  PubMed  Google Scholar 

  138. Lei P, Ayton S, Moon S, Zhang Q, Volitakis I, Finkelstein DI, et al. Motor and cognitive deficits in aged tau knockout mice in two background strains. Mol Neurodegener. 2014;9:29.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron. 2003;37:899–909.

    Article  CAS  PubMed  Google Scholar 

  140. Lei P, Ayton S, Appukuttan AT, Volitakis I, Adlard PA, Finkelstein DI, et al. Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiol Dis. 2015;81:168–75.

    Article  CAS  PubMed  Google Scholar 

  141. Joppe KDN, Tatenhorst L, Caldi Gomes L, Zhang S, Parvaz M, Carboni E et al. Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils. J Neurochem. 2021. https://doi.org/10.1111/jnc.15461.

  142. Guo J, Yue F, Song D, Bousset L, Liang X, Tang J, et al. Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis. Cell Death Dis. 2021;12:1–14.

    Article  Google Scholar 

  143. Guo Y, Ayton S, Lei P. Iron reduces the propagation of pathological α-synuclein: an Editorial Highlight for “Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils”. J Neurochem 2021. https://doi.org/10.1111/jnc.15467.

  144. Masuda-Suzukake M, Nonaka T, Hosokawa M, Kubo M, Shimozawa A, Akiyama H, et al. Pathological alpha-synuclein propagates through neural networks. Acta Neuropathol Commun. 2014;2:88.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Peng C, Gathagan RJ, Covell DJ, Medellin C, Stieber A, Robinson JL, et al. Cellular milieu imparts distinct pathological alpha-synuclein strains in alpha-synucleinopathies. Nature. 2018;557:558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Recasens A, Dehay B, Bove J, Carballo-Carbajal I, Dovero S, Perez-Villalba A, et al. Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75:351–62.

    Article  CAS  PubMed  Google Scholar 

  147. Rey NL, Steiner JA, Maroof N, Luk KC, Madaj Z, Trojanowski JQ, et al. Widespread transneuronal propagation of alpha-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J Exp Med. 2016;213:1759–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rey NL, George S, Steiner JA, Madaj Z, Luk KC, Trojanowski JQ, et al. Spread of aggregates after olfactory bulb injection of alpha-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathol. 2018;135:65–83.

    Article  CAS  PubMed  Google Scholar 

  149. Luk KC, Covell DJ, Kehm VM, Zhang B, Song IY, Byrne MD, et al. Molecular and Biological Compatibility with Host Alpha-Synuclein Influences Fibril Pathogenicity. Cell Rep. 2016;16:3373–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Abdelmotilib H, Maltbie T, Delic V, Liu Z, Hu X, Fraser KB, et al. alpha-Synuclein fibril-induced inclusion spread in rats and mice correlates with dopaminergic Neurodegeneration. Neurobiol Dis. 2017;105:84–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yabuki Y, Matsuo K, Kawahata I, Fukui N, Mizobata T, Kawata Y, et al. Fatty Acid Binding Protein 3 Enhances the Spreading and Toxicity of α-Synuclein in Mouse Brain. Int J Mol Sci 2020;21.

  152. Volpicelli-Daley LA, Luk KC, Lee VM. Addition of exogenous alpha-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous alpha-synuclein to Lewy body and Lewy neurite-like aggregates. Nat Protoc. 2014;9:2135–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Polinski NK, Volpicelli-Daley LA, Sortwell CE, Luk KC, Cremades N, Gottler LM, et al. Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson’s Disease in Rodents. J Parkinsons Dis. 2018;8:303–22.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Delic V, Chandra S, Abdelmotilib H, Maltbie T, Wang S, Kem D, et al. Sensitivity and specificity of phospho-Ser129 α-synuclein monoclonal antibodies. J Comp Neurol. 2018;526:1978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rutherford NJ, Brooks M, Giasson BI. Novel antibodies to phosphorylated α-synuclein serine 129 and NFL serine 473 demonstrate the close molecular homology of these epitopes. Acta Neuropathol Commun. 2016;4:80.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kamp F, Exner N, Lutz AK, Wender N, Hegermann J, Brunner B, et al. Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 2010;29:3571–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ge P, Dawson VL, Dawson TMPINK1. and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease. Mol Neurodegener. 2020;15:20.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Jiang K, Rocha S, Westling A, Kesarimangalam S, Dorfman KD, Wittung-Stafshede P, et al. Alpha-synuclein modulates the physical properties of DNA. Chemistry. 2018;24:15685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, et al. Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem. 2011;286:9031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Paiva I, Jain G, Lazaro DF, Jercic KG, Hentrich T, Kerimoglu C, et al. Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function. Neurobiol Dis. 2018;119:121–35.

    Article  CAS  PubMed  Google Scholar 

  161. Belal C, Ameli NJ, El Kommos A, Bezalel S, Al’Khafaji AM, Mughal MR, et al. The homocysteine-inducible endoplasmic reticulum (ER) stress protein Herp counteracts mutant alpha-synuclein-induced ER stress via the homeostatic regulation of ER-resident calcium release channel proteins. Hum Mol Genet. 2012;21:963–77.

    Article  CAS  PubMed  Google Scholar 

  162. Bernal-Conde LD, Ramos-Acevedo R, Reyes-Hernandez MA, Balbuena-Olvera AJ, Morales-Moreno ID, Arguero-Sanchez R, et al. Alpha-synuclein physiology and pathology: a perspective on cellular structures and organelles. Front Neurosci. 2019;13:1399.

    Article  PubMed  Google Scholar 

  163. Soper JH, Kehm V, Burd CG, Bankaitis VA, Lee VM. Aggregation of alpha-synuclein in S. cerevisiae is associated with defects in endosomal trafficking and phospholipid biosynthesis. J Mol Neurosci. 2011;43:391–405.

    Article  CAS  PubMed  Google Scholar 

  164. Wu Q, Takano H, Riddle DM, Trojanowski JQ, Coulter DA, Lee VM. alpha-Synuclein (alphaSyn) preformed fibrils induce endogenous alphasyn aggregation, compromise synaptic activity and enhance synapse loss in cultured excitatory hippocampal neurons. J Neurosci. 2019;39:5080–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Faucheux BA, Nillesse N, Damier P, Spik G, Mouatt-Prigent A, Pierce A, et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc Natl Acad Sci USA. 1995;92:9603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang Z, Zhang S, Fu P, Zhang Z, Lin K, Ko JK, et al. Roles of glutamate receptors in Parkinson’s disease. Int J Mol Sci. 2019;20.

  167. Faivre F, Joshi A, Bezard E, Barrot M. The hidden side of Parkinson’s disease: studying pain, anxiety and depression in animal models. Neurosci Biobehav Rev. 2019;96:335–52.

    Article  PubMed  Google Scholar 

  168. Oh Y. Patient-specific pluripotent stem cell-based Parkinson’s disease models showing endogenous alpha-synuclein aggregation. BMB Rep. 2019;52:349–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4:1318–20.

    Article  CAS  PubMed  Google Scholar 

  170. Zunke F, Moise AC, Belur NR, Gelyana E, Stojkovska I, Dzaferbegovic H, et al. Reversible conformational conversion of alpha-synuclein into toxic assemblies by glucosylceramide. Neuron. 2018;97:92–107 e110.

    Article  CAS  PubMed  Google Scholar 

  171. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146:37–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311:1670–83.

    Article  PubMed  Google Scholar 

  173. Hoffman-Zacharska D, Koziorowski D, Ross OA, Milewski M, Poznanski JA, Jurek M, et al. Novel A18T and pA29S substitutions in alpha-synuclein may be associated with sporadic Parkinson’s disease. Parkinsonism Relat Disord. 2013;19:1057–60.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Kruger R, Kuhn W, Leenders KL, Sprengelmeyer R, Muller T, Woitalla D, et al. Familial parkinsonism with synuclein pathology: clinical and PET studies of A30P mutation carriers. Neurology. 2001;56:1355–62.

    Article  CAS  PubMed  Google Scholar 

  175. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55:164–73.

    Article  CAS  PubMed  Google Scholar 

  176. Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper JM, Millhauser GL, et al. A novel alpha-synuclein missense mutation in Parkinson disease. Neurology. 2013;80:1062–4.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Markopoulou K, Dickson DW, McComb RD, Wszolek ZK, Katechalidou L, Avery L, et al. Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Variability in familial Parkinson’s disease. Acta Neuropathol. 2008;116:25–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 2004;364:1167–9.

    Article  CAS  PubMed  Google Scholar 

  179. Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet. 2004;364:1169–71.

    Article  CAS  PubMed  Google Scholar 

  180. Nishioka K, Ross OA, Ishii K, Kachergus JM, Ishiwata K, Kitagawa M, et al. Expanding the clinical phenotype of SNCA duplication carriers. Mov Disord. 2009;24:1811–9.

    Article  PubMed  Google Scholar 

  181. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841.

    Article  CAS  PubMed  Google Scholar 

  182. Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M, et al. Comparison of kindreds with Parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol. 2004;55:174–9.

    Article  CAS  PubMed  Google Scholar 

  183. Olgiati S, Thomas A, Quadri M, Breedveld GJ, Graafland J, Eussen H, et al. Early-onset parkinsonism caused by alpha-synuclein gene triplication: clinical and genetic findings in a novel family. Parkinsonism Relat Disord. 2015;21:981–6.

    Article  PubMed  Google Scholar 

  184. Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharm. 1968;5:107–10.

    Article  CAS  Google Scholar 

  185. Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: novel findings in an older model. Neurologia. 2017;32:533–9.

    Article  CAS  PubMed  Google Scholar 

  186. Heikkila RE, Hess A, Duvoisin RC. Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science. 1984;224:1451–3.

    Article  CAS  PubMed  Google Scholar 

  187. Chiueh CC, Markey SP, Burns RS, Johannessen JN, Jacobowitz DM, Kopin IJ. Neurochemical and behavioral effects of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) in rat, guinea pig, and monkey. Psychopharmacol Bull. 1984;20:548–53.

    CAS  PubMed  Google Scholar 

  188. Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc. 2007;2:141–51.

    Article  CAS  PubMed  Google Scholar 

  189. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3:1301–6.

    Article  CAS  PubMed  Google Scholar 

  190. Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology. 2015;46:101–16.

    Article  CAS  PubMed  Google Scholar 

  191. Corasaniti MT, Bagetta G, Rodinò P, Gratteri S, Nisticò G. Neurotoxic effects induced by intracerebral and systemic injection of paraquat in rats. Hum Exp Toxicol. 1992;11:535–9.

    Article  CAS  PubMed  Google Scholar 

  192. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000;287:1265–9.

    Article  CAS  PubMed  Google Scholar 

  193. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci. 2002;22:2780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Henrich MT, Geibl FF, Lakshminarasimhan H, Stegmann A, Giasson BI, Mao X, et al. Determinants of seeding and spreading of α-synuclein pathology in the brain. Sci Adv. 2020;6:eabc2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (82071191, 81722016, 32000724, 31800899), the China Postdoctoral Science Foundation (2019M650241, 2018M633375), the Key Research Projects of Sichuan Province (2020YFS0279, 2019YFS0212), and the Fundamental Research Funds for the Central Universities (2021SCU12103).

Author information

Authors and Affiliations

Authors

Contributions

YG and PL conceived the review; YG and KC performed the literature search and data analysis; YG and JZ prepared the figures; YG and PL wrote and edited the review; and HX critically edited the work.

Corresponding author

Correspondence to Peng Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, YJ., Xiong, H., Chen, K. et al. Brain regions susceptible to alpha-synuclein spreading. Mol Psychiatry 27, 758–770 (2022). https://doi.org/10.1038/s41380-021-01296-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01296-7

  • Springer Nature Limited

This article is cited by

Navigation