Skip to main content

Advertisement

Log in

NPM-ALK phosphorylates WASp Y102 and contributes to oncogenesis of anaplastic large cell lymphoma

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Mechanisms by which NPM-ALK signaling regulates cell migration, invasion and contributes to the oncogenesis of anaplastic large cell lymphoma (ALCL) are not completely understood. In an attempt to identify novel actin signaling pathways regulated by NPM-ALK, a comprehensive phosphoproteome analysis of ALCL cell lines was performed in the presence or absence of NPM-ALK activity. Numerous phosphoproteins involved in actin dynamics including Wiskott–Aldrich syndrome protein (WASp) were regulated by NPM-ALK. Network analysis revealed that WASp is a central component of the NPM-ALK-dependent actin signaling pathway. Here we show that NPM-ALK phosphorylates WASp at its known activation site (Y290) as well as at a novel residue (Y102). Phosphorylation of WASp at Y102 negatively regulates its interaction with Wiskott–Aldrich interacting protein and decreases its protein stability. Phosphorylation of WASp at Y102 enhances anchorage-independent growth and tumor growth in an in vivo xenograft model and enhances invasive properties of ALCL. We show that knock-down of WASp or expression of Y102F mutant of WASp decreases colony formation and in vivo tumor growth. Our results show that WASp is a novel substrate of ALK and has a critical role in regulating invasiveness and oncogenesis of ALCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Amin HM, Lai R . Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood 2007; 110: 2259–2267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281–1284.

    Article  CAS  PubMed  Google Scholar 

  3. Bischof D, Pulford K, Mason DY, Morris SW . Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol 1997; 17: 2312–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bai RY, Dieter P, Peschel C, Morris SW, Duyster J . Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol 1998; 18: 6951–6961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McDonnell SR, Hwang SR, Basrur V, Conlon KP, Fermin D, Wey E et al. NPM-ALK signals through glycogen synthase kinase 3beta to promote oncogenesis. Oncogene 2012; 31: 3733–3740.

    Article  CAS  PubMed  Google Scholar 

  6. Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, Majewski M, Xue L et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res 2001; 61: 2194–2199.

    CAS  PubMed  Google Scholar 

  7. Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 2002; 21: 1038–1047.

    Article  CAS  PubMed  Google Scholar 

  8. Ambrogio C, Voena C, Manazza AD, Martinengo C, Costa C, Kirchhausen T et al. The anaplastic lymphoma kinase controls cell shape and growth of anaplastic large cell lymphoma through Cdc42 activation. Cancer Res 2008; 68: 8899–8907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ambrogio C, Voena C, Manazza AD, Piva R, Riera L, Barberis L et al. p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood 2005; 106: 3907–3916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lim MS, Carlson ML, Crockett DK, Fillmore GC, Abbott DR, Elenitoba-Johnson OF et al. The proteomic signature of NPM/ALK reveals deregulation of multiple cellular pathways. Blood 2009; 114: 1585–1595.

    Article  CAS  PubMed  Google Scholar 

  11. Sasahara Y, Rachid R, Byrne MJ, de la Fuente MA, Abraham RT, Ramesh N et al. Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol Cell 2002; 10: 1269–1281.

    Article  CAS  PubMed  Google Scholar 

  12. Dupre L, Aiuti A, Trifari S, Martino S, Saracco P, Bordignon C et al. Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 2002; 17: 157–166.

    Article  CAS  PubMed  Google Scholar 

  13. Linder S, Wintergerst U, Bender-Gotze C, Schwarz K, Pannicke U, Aepfelbacher M . Macrophages of patients with X-linked thrombocytopenia display an attenuated Wiskott-Aldrich syndrome phenotype. Immunol Cell Biol 2003; 81: 130–136.

    Article  CAS  PubMed  Google Scholar 

  14. Linder S, Nelson D, Weiss M, Aepfelbacher M . Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci USA 1999; 96: 9648–9653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zicha D, Allen WE, Brickell PM, Kinnon C, Dunn GA, Jones GE et al. Chemotaxis of macrophages is abolished in the Wiskott-Aldrich syndrome. Br J Haematol 1998; 101: 659–665.

    Article  CAS  PubMed  Google Scholar 

  16. Badolato R, Sozzani S, Malacarne F, Bresciani S, Fiorini M, Borsatti A et al. Monocytes from Wiskott-Aldrich patients display reduced chemotaxis and lack of cell polarization in response to monocyte chemoattractant protein-1 and formyl-methionyl-leucyl-phenylalanine. J Immunol 1998; 161: 1026–1033.

    CAS  PubMed  Google Scholar 

  17. Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 2005; 168: 441–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oda A, Ochs HD, Lasky LA, Spencer S, Ozaki K, Fujihara M et al. CrkL is an adapter for Wiskott-Aldrich syndrome protein and Syk. Blood 2001; 97: 2633–2639.

    Article  CAS  PubMed  Google Scholar 

  19. Ochs HD, Thrasher AJ . The Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2006; 117: 725–738 quiz 39.

    Article  CAS  PubMed  Google Scholar 

  20. Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA . A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr 1994; 125 (6 Pt 1): 876–885.

    Article  CAS  PubMed  Google Scholar 

  21. Symons M, Derry JM, Karlak B, Jiang S, Lemahieu V, McCormick F et al. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 1996; 84: 723–734.

    Article  CAS  PubMed  Google Scholar 

  22. Kolluri R, Tolias KF, Carpenter CL, Rosen FS, Kirchhausen T . Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42. Proc Natl Acad Sci USA 1996; 93: 5615–5618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK . Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 2000; 404: 151–158.

    Article  CAS  PubMed  Google Scholar 

  24. Baba Y, Nonoyama S, Matsushita M, Yamadori T, Hashimoto S, Imai K et al. Involvement of wiskott-aldrich syndrome protein in B-cell cytoplasmic tyrosine kinase pathway. Blood 1999; 93: 2003–2012.

    CAS  PubMed  Google Scholar 

  25. Cory GO, Cramer R, Blanchoin L, Ridley AJ . Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. Mol Cell 2003; 11: 1229–1239.

    Article  CAS  PubMed  Google Scholar 

  26. Badour K, Zhang J, Shi F, Leng Y, Collins M, Siminovitch KA . Fyn and PTP-PEST-mediated regulation of Wiskott-Aldrich syndrome protein (WASp) tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to WASp effector function and T cell activation. J Exp Med 2004; 199: 99–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramesh N, Anton IM, Hartwig JH, Geha RS . WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc Natl Acad Sci USA 1997; 94: 14671–14676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Volkman BF, Prehoda KE, Scott JA, Peterson FC, Lim WA . Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Cell 2002; 111: 565–576.

    Article  CAS  PubMed  Google Scholar 

  29. Stewart DM, Tian L, Nelson DL . Mutations that cause the Wiskott-Aldrich syndrome impair the interaction of Wiskott-Aldrich syndrome protein (WASP) with WASP interacting protein. J Immunol 1999; 162: 5019–5024.

    CAS  PubMed  Google Scholar 

  30. de la Fuente MA, Sasahara Y, Calamito M, Anton IM, Elkhal A, Gallego MD et al. WIP is a chaperone for Wiskott-Aldrich syndrome protein (WASP). Proc Natl Acad Sci USA 2007; 104: 926–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jin P, Duan R, Luo F, Zhang G, Hong SN, Chen EH . Competition between blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo. Dev Cell 2011; 20: 623–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McDonnell SR, Hwang SR, Basrur V, Conlon KP, Fermin D, Wey E et al. NPM-ALK signals through glycogen synthase kinase 3beta to promote oncogenesis. Oncogene 2011; 31: 3733–3740.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cory GO, MacCarthy-Morrogh L, Banin S, Gout I, Brickell PM, Levinsky RJ et al. Evidence that the Wiskott-Aldrich syndrome protein may be involved in lymphoid cell signaling pathways. J Immunol 1996; 157: 3791–3795.

    CAS  PubMed  Google Scholar 

  34. Meacham CE, Ho EE, Dubrovsky E, Gertler FB, Hemann MT . in vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nat Genet 2009; 41: 1133–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Donella-Deana A, Marin O, Cesaro L, Gunby RH, Ferrarese A, Coluccia AM et al. Unique substrate specificity of anaplastic lymphoma kinase (ALK): development of phosphoacceptor peptides for the assay of ALK activity. Biochemistry 2005; 44: 8533–8542.

    Article  CAS  PubMed  Google Scholar 

  36. Dovas A, Cox D . Regulation of WASp by phosphorylation: activation or other functions? Commun Integr Biol 2010; 3: 101–105.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J . N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci 2012; 125 (Pt 3): 724–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lagarrigue F, Dupuis-Coronas S, Ramel D, Delsol G, Tronchere H, Payrastre B et al. Matrix metalloproteinase-9 is upregulated in nucleophosmin-anaplastic lymphoma kinase-positive anaplastic lymphomas and activated at the cell surface by the chaperone heat shock protein 90 to promote cell invasion. Cancer Res 2010; 70: 6978–6987.

    Article  CAS  PubMed  Google Scholar 

  39. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  40. Lane J, Martin T, Weeks HP, Jiang WG . Structure and role of WASP and WAVE in Rho GTPase signalling in cancer. Cancer Genomics Proteomics 2014; 11: 155–165.

    PubMed  Google Scholar 

  41. Cougoule C, Van Goethem E, Le Cabec V, Lafouresse F, Dupre L, Mehraj V et al. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur J Cell Biol 2012; 91: 938–949.

    Article  CAS  PubMed  Google Scholar 

  42. Wolf K, Muller R, Borgmann S, Brocker EB, Friedl P . Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 2003; 102: 3262–3269.

    Article  CAS  PubMed  Google Scholar 

  43. Chou HC, Anton IM, Holt MR, Curcio C, Lanzardo S, Worth A et al. WIP regulates the stability and localization of WASP to podosomes in migrating dendritic cells. Curr Biol 2006; 16: 2337–2344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blundell MP, Bouma G, Metelo J, Worth A, Calle Y, Cowell LA et al. Phosphorylation of WASp is a key regulator of activity and stability in vivo. Proc Natl Acad Sci USA 2009; 106: 15738–15743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ott GR, Wells GJ, Thieu TV, Quail MR, Lisko JG, Mesaros EF et al. 2,7-Disubstituted-pyrrolo[2,1-f][1,2,4]triazines: new variant of an old template and application to the discovery of anaplastic lymphoma kinase (ALK) inhibitors with in vivo antitumor activity. J Med Chem 2011; 54: 6328–6341.

    Article  CAS  PubMed  Google Scholar 

  46. Tripathy R, McHugh RJ, Ghose AK, Ott GR, Angeles TS, Albom MS et al. Pyrazolone-based anaplastic lymphoma kinase (ALK) inhibitors: control of selectivity by a benzyloxy group. Bioorg Med Chem Lett 2011; 21: 7261–7264.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Pathology, University of Michigan and R01 CA140806-01 (MSL), R01 DE119249, R01 CA136905 (KSJ-EJ) and HONORS-ASH award (CMZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Lim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murga-Zamalloa, C., Mendoza-Reinoso, V., Sahasrabuddhe, A. et al. NPM-ALK phosphorylates WASp Y102 and contributes to oncogenesis of anaplastic large cell lymphoma. Oncogene 36, 2085–2094 (2017). https://doi.org/10.1038/onc.2016.366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.366

  • Springer Nature Limited

This article is cited by

Navigation