Skip to main content

Advertisement

Log in

Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3′UTR and 5′UTR of Jab1/CSN5

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Radiotherapy is the standard therapy for nasopharyngeal carcinoma (NPC); however, radioresistance can hinder successful treatment. Here we report that microRNA (miR)-24 acts as a tumor suppressor and radiosensitizer in NPC cells and xenografts by targeting Jab1/CSN5. Although accumulating evidence has shown that Jab1/CSN5 functions as an oncoprotein in human cancers, its regulation through miRs has not been described. In this study, we found that Jab1/CSN5 functioned in a manner opposite to that of miR-24 in NPC tumorigenesis and radioresistance. We demonstrated that miR-24 inhibits Jab1/CSN5 translation via direct binding to its 3′ untranslated region (3′UTR) and 5′UTR, leading to tumor growth inhibition, and sensitizes NPC tumors to radiation in vivo. Furthermore, silencing Jab1/CSN5 phenocopied the function of miR-24 in NPC cells after ionizing radiation treatment, resulting in increased apoptosis. Finally, we analyzed 50 paired samples of primary and matched recurrent NPC tissues from 25 NPC patients and subjected them to high-throughput genomic quantitative nuclease protection assay for quantifying simultaneously miR and mRNA levels. Our results showed that miR-24 levels were significantly decreased in recurrent NPC and that levels of Jab1/CSN5, as its target, were higher than those in primary NPC. Together, our findings indicate that miR-24 inhibits NPC tumor growth and increases NPC radiosensitivity by directly regulating Jab1/CSN5 and that both miR-24 and Jab1/CSN5 can serve as prognostic markers for NPC recurrence; this, in turn, may provide a promising therapeutic strategy for reversing NPC radioresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chien YC, Chen JY, Liu MY, Yang HI, Hsu MM, Chen CJ et al. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 2001; 345: 1877–1882.

    Article  CAS  PubMed  Google Scholar 

  2. Sham JS, Wei WI, Zong YS, Choy D, Guo YQ, Luo Y et al. Detection of subclinical nasopharyngeal carcinoma by fibreoptic endoscopy and multiple biopsy. Lancet 1990; 335: 371–374.

    Article  CAS  PubMed  Google Scholar 

  3. Wei WI, Sham JS . Nasopharyngeal carcinoma. Lancet 2005; 365: 2041–2054.

    Article  PubMed  Google Scholar 

  4. Chan AT, Gregoire V, Lefebvre JL, Licitra L, Felip E,, EHNS-ESMO-ESTRO Guidelines Working Group.. Nasopharyngeal cancer: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21 (Suppl 5):v187–v189.

    Article  PubMed  Google Scholar 

  5. Liu SC, Tsang NM, Chiang WC, Chang KP, Hsueh C, Liang Y et al. Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Invest 2013; 123: 5269–5283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801.

    Article  CAS  PubMed  Google Scholar 

  7. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    Article  CAS  PubMed  Google Scholar 

  8. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  9. Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 2008; 13: 48–57.

    Article  CAS  PubMed  Google Scholar 

  10. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  11. Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, Chang KP et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer 2009; 100: 1002–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GS, Banerjee D, Bertino JR . A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 2007; 104: 13513–13518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie Y, Tobin LA, Camps J, Wangsa D, Yang J, Rao M et al. MicroRNA-24 regulates XIAP to reduce the apoptosis threshold in cancer cells. Oncogene 2013; 32: 2442–2451.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng AM, Byrom MW, Shelton J, Ford LP . Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005; 33: 1290–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walker JC, Harland RM . MicroRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev 2009; 23: 1046–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Metheetrairut C, Slack FJ . MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev 2013; 23: 12–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Claret FX, Hibi M, Dhut S, Toda T, Karin M . A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 1996; 383: 453–457.

    Article  CAS  PubMed  Google Scholar 

  18. Wei N, Deng XW . The COP9 signalosome. Annu Rev Cell Dev Biol 2003; 19: 261–286.

    Article  CAS  PubMed  Google Scholar 

  19. Tomoda K, Kubota Y, Arata Y, Mori S, Maeda M, Tanaka T et al. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J Biol Chem 2002; 277: 2302–2310.

    Article  CAS  PubMed  Google Scholar 

  20. Hsu MC, Huang CC, Chang HC, Hu TH, Hung WC . Overexpression of Jab1 in hepatocellular carcinoma and its inhibition by peroxisome proliferator-activated receptor{gamma} ligands in vitro and in vivo. Clin Cancer Res 2008; 14: 4045–4052.

    Article  CAS  PubMed  Google Scholar 

  21. Pan Y, Zhang Q, Tian L, Wang X, Fan X, Zhang H et al. Jab1/CSN5 negatively regulates p27 and plays a role in the pathogenesis of nasopharyngeal carcinoma. Cancer Res 2012; 72: 1890–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shackleford TJ, Claret FX . JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div 2010; 5: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pan Y, Zhang Q, Atsaves V, Yang H, Claret FX . Suppression of Jab1/CSN5 induces radio- and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways. Oncogene 2013; 32: 2756–2766.

    Article  CAS  PubMed  Google Scholar 

  24. Tian L, Peng G, Parant JM, Leventaki V, Drakos E, Zhang Q et al. Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene 2010; 29: 6125–6137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sorrells S, Carbonneau S, Harrington E, Chen AT, Hast B, Milash B et al. Ccdc94 protects cells from ionizing radiation by inhibiting the expression of p53. PLoS Genet 2012; 8: e1002922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pan Y, Claret FX . Targeting Jab1/CSN5 in nasopharyngeal carcinoma. Cancer Lett 2012; 326: 155–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pan Y, Yang H, Claret FX . Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer. Cancer Biol Ther 2014; 15: 256–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang S, Zhang R, Claret FX, Yang H . Involvement of microRNA-24 and DNA methylation in resistance of nasopharyngeal carcinoma to ionizing radiation. Mol Cancer Ther 2014; 13: 3163–3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kruger J, Rehmsmeier M . RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006; 34: W451–W454.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R . Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10: 1507–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pechhold S, Stouffer M, Walker G, Martel R, Seligmann B, Hang Y et al. Transcriptional analysis of intracytoplasmically stained, FACS-purified cells by high-throughput, quantitative nuclease protection. Nat Biotechnol 2009; 27: 1038–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garzon R, Marcucci G, Croce CM . Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9: 775–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lim WT, Ng QS, Ivy P, Leong SS, Singh O, Chowbay B et al. A Phase II study of pazopanib in Asian patients with recurrent/metastatic nasopharyngeal carcinoma. Clin Cancer Res 2011; 17: 5481–5489.

    Article  CAS  PubMed  Google Scholar 

  35. Qu YM, Zhao SP, Hong JD, Tang S . Radiosensitive gene therapy through imRNA expression for silencing manganese superoxide dismutase. J Cancer Res Clin 2010; 136: 953–959.

    Article  CAS  Google Scholar 

  36. Lu JA, He ML, Wang L, Chen Y, Liu XO, Dong Q et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 2011; 71: 225–233.

    Article  CAS  PubMed  Google Scholar 

  37. Chhabra R, Dubey R, Saini N . Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases. Mol Cancer 2010; 9: 232.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 2011; 124: 720–730.

    Article  CAS  PubMed  Google Scholar 

  39. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol Cell 2009; 35: 610–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 2009; 16: 492–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weidhaas JB, Babar L, Nallur SM, Trang P, Roush S, Boehm N et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007; 67: 11111–11116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwarzenbach H, Hoon DSB, Pantel K . Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11: 426–437.

    Article  CAS  PubMed  Google Scholar 

  43. Kouvaraki MA, Korapati AL, Rassidakis GZ, Tian L, Zhang Q, Chiao P et al. Potential role of Jun activation domain-binding protein 1 as a negative regulator of p27kip1 in pancreatic adenocarcinoma. Cancer Res 2006; 66: 8581–8589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee YH, Judge AD, Seo D, Kitade M, Gomez-Quiroz LE, Ishikawa T et al. Molecular targeting of CSN5 in human hepatocellular carcinoma: a mechanism of therapeutic response. Oncogene 2011; 30: 4175–4184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Doronkin S, Djagaeva I, Beckendorf SK . CSN5/Jab1 mutations affect axis formation in the Drosophila oocyte by activating a meiotic checkpoint. Development 2002; 129: 5053–5064.

    CAS  PubMed  Google Scholar 

  46. Ambros V . The functions of animal microRNAs. Nature 2004; 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  47. Cannell IG, Kong YW, Bushell M . How do microRNAs regulate gene expression? Biochem Soc Trans 2008; 36: 1224–1231.

    Article  CAS  PubMed  Google Scholar 

  48. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P . Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 2005; 309: 1577–1581.

    Article  CAS  PubMed  Google Scholar 

  49. Orom UA, Nielsen FC, Lund AH . MicroRNA-10a binds the 5 ' UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30: 460–471.

    Article  PubMed  Google Scholar 

  50. Qu CJ, Liang ZH, Huang JL, Zhao RY, Su CH, Wang SM et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle 2012; 11: 785–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McCarty KS Jr, Szabo E, Flowers JL, Cox EB, Leight GS, Miller L et al. Use of a monoclonal anti-estrogen receptor antibody in the immunohistochemical evaluation of human tumors. Cancer Res 1986; 46: 4244s–4248s.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michael Worley and the Department of Scientific Publications at MD Anderson Cancer Center for editing the manuscript. This study was supported by a fellowship from the China Scholarship Council (201206380043 to SW), the National Natural Science Foundation of China (81071837, 81372410 and 30670627 to HY) and the Scientific and Technological Project of Guangdong, China (2008A030201009 and 2010B050700016 to HY) and by grants from the National Cancer Institute (R01-CA90853 to FXC), the Sister Institution Network Fund (FXC) and The University of Texas MD Anderson Functional Proteomics Core Facility (NCI Cancer Center Support Grant CA16672).

Author contributions

Conception and design: S Wang, Y Pan, H Yang, FX Claret. Development of methodology: S Wang, Y Pan, R Zhang, H Yang, FX Claret. Acquisition of data (provided animals, acquired and managed patients, provided facilities and so on): S Wang, Y Pan, R Zhang, T Xu, W Wu, C Wang, H Huang, H Yang, FX Claret. Analysis and interpretation of data (for example, statistical analysis, biostatistics, computational analysis): S Wang, FX Claret. Writing, review and/or revision of the manuscript: S Wang, Y Pan, FX Claret. Administrative, technical or material support (that is, reporting or organizing, data, constructing databases): H Yang, FX Claret. Study supervision: FX Claret. Other (helped with discussion and comments on the project): G Calin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Wang, H Yang or F X Claret.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Pan, Y., Zhang, R. et al. Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3′UTR and 5′UTR of Jab1/CSN5. Oncogene 35, 6096–6108 (2016). https://doi.org/10.1038/onc.2016.147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.147

  • Springer Nature Limited

This article is cited by

Navigation