Skip to main content

Advertisement

Log in

Animal models of insulin resistance: A review

  • Review article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Insulin resistance can be seen as a molecular and genetic mystery, with a role in the pathophysiology of type 2 diabetes mellitus. It is a basis for a number of chronic diseases like hypertension, dyslipidemia, glucose intolerance, coronary heart disease, cerebral vascular disease along with T2DM, thus the key is to cure and prevent insulin resistance. Critical perspicacity into the etiology of insulin resistance have been gained by the use of animal models where insulin action has been modulated by various transgenic and non-transgenic models which is not possible in human studies. The following review comprises the pathophysiology involved in insulin resistance, various factors causing insulin resistance, their screening and various genetic and non-genetic animal models highlighting the pathological and metabolic characteristics of each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin SD, McGee SL. The role of mitochondria in the aetiology of insulin resistance and type 2 diabetes. Biochim Biophys Acta 2014; 1840:1303–12.

    Article  CAS  PubMed  Google Scholar 

  2. Misra P, Upadhyay RP, Misra A, Anand K. A review of the epidemiology of diabetes in rural India. Diabetes Res Clin Pract 2011;92:303–11.

    Article  CAS  PubMed  Google Scholar 

  3. Nandi A, Kitamura Y, Kahn CR, Accili D. Mouse models of insulin resistance. Physiol Rev 2004;84:623–47.

    Article  CAS  PubMed  Google Scholar 

  4. Duque-Guimaraes DE, Ozanne SE. Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol Metab 2013;24:525–35.

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Gu C, He W, Ye X, Chen H, Zhang X, et al. Glucose oxidase induces insulin resistance via influencing multiple targets in vitro and in vivo: the central role of oxidative stress. Biochimie 2012;94:1705–17.

    Article  CAS  PubMed  Google Scholar 

  6. Defronzo RA. Banting Lecture From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009;58:773–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hishinuma A, Majima M, Kurabayashi H. Insulin resistance in patients with stroke is related to visceral fat obesity and adipocytokines. J Stroke Cerebrovasc Dis 2008;17:175–80.

    Article  PubMed  Google Scholar 

  8. Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995;376:599–602.

    Article  CAS  PubMed  Google Scholar 

  9. Wheatcroft SB, Williams IL, Shah AM, Kearney MT. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabet Med 2003;20:255–68.

    Article  CAS  PubMed  Google Scholar 

  10. Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKb and ER stress inhibition. PLoS Biol 2010;8:1812.

    Article  CAS  Google Scholar 

  11. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006; 116:1793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 2007;21:1443–55.

    Article  CAS  PubMed  Google Scholar 

  13. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11:373–84.

    Article  CAS  PubMed  Google Scholar 

  14. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka Ta, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 2005;280:847–51.

    Article  CAS  PubMed  Google Scholar 

  15. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012;148:852–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burén J, Eriksson JW. Is insulin resistance caused by defects in insulin’s target cells or by a stressed mind. Diabetes Metab Res Rev 2005;21:487–94.

    Article  PubMed  CAS  Google Scholar 

  17. Sjöstrand M, Eriksson JW. Neuroendocrine mechanisms in insulin resistance. Mol Cell Endocrinol 2009;297:104–11.

    Article  PubMed  CAS  Google Scholar 

  18. Karam J, Forsham P. Pancreatic hormones and diabetes mellitus. Basic and Clinical Endocrinology. Stamford CT USA: Appleton & Lange; 1997. p. 601–2.

    Google Scholar 

  19. Kahn SE, McCulloch DK, Porte Jr D. Insulin secretion in the normal and diabetic human. International Textbook of Diabetes Mellitus. 2nd edn New York: J Wiley & Sons; 1997. p. 338–53.

    Google Scholar 

  20. Bray GA, Lovejoy JC, Smith SR, DeLany JP, Lefevre M, Hwang D, et al. The influence of different fats and fatty acids on obesity, insulin resistance and inflammation. J Nutr 2002; 132:2488–91.

    Article  CAS  PubMed  Google Scholar 

  21. Toida S, Takahashi M, Shimizu H, Sato N, Shimomura Y, Kobayashi I. Effect of high sucrose feeding on fat accumulation in the male Wistar rat. Obes Res 1996;4:561–8.

    Article  CAS  PubMed  Google Scholar 

  22. Linn T, Santosa B, Gronemeyer D, Aygen S, Scholz N, Busch M, et al. Effect of long-term dietary protein intake on glucose metabolism in humans. Diabetologia 2000;43:1257–65.

    Article  CAS  PubMed  Google Scholar 

  23. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev 2005;26:19–39.

    PubMed  PubMed Central  Google Scholar 

  24. Marette A. Molecular mechanisms of inflammation in obesity-linked insulin resistance. IntJ Obes Relat Metab Disord 2003;27(Suppl. 3):S46–8.

    Article  CAS  Google Scholar 

  25. Hirose M, Kaneki M, Sugita H, Yasuhara S, Martyn JA. Immobilization depresses insulin signaling in skeletal muscle. Am J Physiol Endocrinol Metab 2000;279:E1235–41.

    Article  CAS  PubMed  Google Scholar 

  26. Aronne LJ, Segal KR. Adiposity and fat distribution outcome measures: assessment and clinical implications. Obes Res 2002;10(Suppl. 1):14S–21S.

    Article  PubMed  Google Scholar 

  27. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 2000; 106:473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1Bgene. Science 1999;283:1544–8.

    Article  CAS  PubMed  Google Scholar 

  29. Vorona RD, Winn MP, Babineau TW, Eng BP, Feldman HR, Ware JC. Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index. Arch Intern Med 2005;165:25–30.

    Article  PubMed  Google Scholar 

  30. Hew F, O’Neal D, Kamarudin N, Alford F, Best J. 1 Growth hormone deficiency and cardiovascular risk. Baillieres Clin Endocrinol Metab 1998;12:199–216.

    Article  CAS  PubMed  Google Scholar 

  31. Halvatsiotis P, Turk D, Alzaid A, Dinneen S, Rizza R, Nair K. Insulin effect on leucine kinetics in type 2 diabetes mellitus. Diabetes Metab Res 2002;15:136–42.

    CAS  Google Scholar 

  32. Dohm GL. Invited review: regulation of skeletal muscle GLUT-4 expression by exercise. J Appl Physiol (1985) 2002;93:782–7.

    Article  CAS  Google Scholar 

  33. Henriksen EJ. Invited review: effects of acute exercise and exercise training on insulin resistance. J Appl Physiol (1985) 2002;93:788–96.

    Article  CAS  Google Scholar 

  34. Lee JM, Okumura MJ, Davis MM, Herman WH, Gurney JG. Prevalence and determinants of insulin resistance among US adolescents a population-based study. Diabetes Care 2006;29:2427–32.

    Article  PubMed  Google Scholar 

  35. Ye J. Mechanisms of insulin resistance in obesity. Front Med 2013;7:14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ehses J, Meier D, Wueest S, RytkaJ, Boller S, Wielinga P, et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia 2010;53:1795–806.

    Article  CAS  PubMed  Google Scholar 

  37. Davis JE, Braucher DR, Walker-Daniels J, Spurlock ME. Absence of Tlr2 protects against high-fat diet-induced inflammation and results in greater insulin-stimulated glucose transport in cultured adipocytes. J Nutr Biochem 2011;22:136–41.

    Article  CAS  PubMed  Google Scholar 

  38. Lee YS, Li P, Huh JY, Hwang IJ, Lu M, Kim JI, et al. Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 2011;60:2474–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leung N, Naples M, Uffelman K, Szeto L, Adeli K, Lewis GF. Rosiglitazone improves intestinal lipoprotein overproduction in the fat-fed Syrian Golden hamster, an animal model of nutritionally-induced insulin resistance. Atherosclerosis 2004; 174:235–41.

    Article  CAS  PubMed  Google Scholar 

  40. Ai J, Wang N, Yang M, Du ZM, Zhang YC, Yang BF. Development of Wistar rat model of insulin resistance. World J Gastroenterol 2005; 11:3675–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bonner JS, Lantier L, Hocking KM, Kang L, Owolabi M, James FD, et al. Relaxin treatment reverses insulin resistance in mice fed a high-fat diet. Diabetes 2013;62:3251–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA. A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr 2010;46:212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan J, Zhao Y, Suo S, Liu Y, Zhao B. Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress. Free Radic Biol Med 2012;52:1648–57.

    Article  CAS  PubMed  Google Scholar 

  44. Higa TS, Spinola AV, Fonseca-Alaniz MH, Evangelista F. Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice. Int J Physiol Pathophysiol Pharmacol 2014;6:47–54.

    PubMed  PubMed Central  Google Scholar 

  45. Brandt N, De Bock K, Richter EA, Hespel P. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. Am J Physiol Endocrinol Metab 2010;299:E215–24.

    Article  CAS  PubMed  Google Scholar 

  46. Pinto Júnior DAC, Seraphim PM. Cafeteria diet intake for fourteen weeks can cause obesity and insulin resistance in Wistar rats. Revista de Nutriúço 2012;25:313–9.

    Article  Google Scholar 

  47. Gonzalez-Abuin N, Martinez-Micaelo N, Blay M, Ardevol A, Pinent M. Grapeseed procyanidins prevent the cafeteria-diet-induced decrease of glucagon-like peptide-1 production. J Agric Food Chem 2014;62:1066–72.

    Article  CAS  PubMed  Google Scholar 

  48. Brandimarti P, Costa-Junior JM, Ferreira SM, Protzek AO, Santos GJ, Carneiro EM, et al. Cafeteria diet inhibits insulin clearance by reduced insulin-degrading enzyme expression and mRNA splicing. J Endocrinol 2013;219:173–82.

    Article  CAS  PubMed  Google Scholar 

  49. Basciano H, Federico L, Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond) 2005;2:5.

    Article  CAS  Google Scholar 

  50. Naples M, Federico LM, Xu E, Nelken J, Adeli K. Effect of rosuvastatin on insulin sensitivity in an animal model of insulin resistance: evidence for statin-induced hepatic insulin sensitization. Atherosclerosis 2008;198:94–103.

    Article  CAS  PubMed  Google Scholar 

  51. Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Zachariah B. Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male Wistar rats: potential role of serine kinases. Chem Biol Interact 2016;244:187–94.

    Article  CAS  PubMed  Google Scholar 

  52. Castro MC, Massa ML, Arbeláez LG, Schinella G, Gagliardino JJ, Francini F. Fructose-induced inflammation, insulin resistance and oxidative stress: a liver pathological triad effectively disrupted by lipoic acid. Life Sci 2015;137:1–6.

    Article  CAS  PubMed  Google Scholar 

  53. Maged A, Haroun NM, Laila A, Elsayed M, Laila A, Rashed M, Mohammed MA. The effect of high fat diet and high fructose intake on insulin resistance and GLP-1 in experimental animals. Med J Cairo Univ 2011;79.

  54. Del Toro-Equihua M, Velasco-Rodríguez R, López-Ascencio R, Vásquez C. Effect of an avocado oil-enhanced diet (Persea americana) on sucrose-induced insulin resistance in Wistar rats. J Food Drug Anal 2016; 24:350–7.

    Article  PubMed  CAS  Google Scholar 

  55. Soria A, Chicco A, Eugenia D’Alessandro M, Rossi A, Lombardo YB. Dietary fish oil reverse epididymal tissue adiposity, cell hypertrophy and insulin resistance in dyslipemic sucrose fed rat model small star, filled. J Nutr Biochem 2002;13:209–18.

    Article  CAS  PubMed  Google Scholar 

  56. Couturier K, Qin B, Batandier C, Awada M, Hininger-Favier I, Canini F, et al. Cinnamon increases liver glycogen in an animal model of insulin resistance. Metabolism 2011;60:1590–7.

    Article  CAS  PubMed  Google Scholar 

  57. Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, et al. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab (Lond) 2016;13:1.

    Article  CAS  Google Scholar 

  58. Li Y, Tran VH, Kota BP, Nammi S, Duke CC, Roufogalis BD. Preventative effect of zingiber officinale on insulin resistance in a high-fat high-carbohydrate diet-fed rat model and its mechanism of action. Basic Clin Pharmacol Toxicol 2014;115:209–15.

    Article  CAS  PubMed  Google Scholar 

  59. Ning B, Wang X, Yu Y, Waqar AB, Yu Q, Koike T, et al. High-fructose and high-fat diet-induced insulin resistance enhances atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Nutr Metab (Lond) 2015;12:30.

    Article  CAS  Google Scholar 

  60. Ogihara T, Asano T, Ando K, Chiba Y, Sekine N, Sakoda H, et al. Insulin resistance with enhanced insulin signaling in high-salt diet-fed rats. Diabetes 2001;50:573–83.

    Article  CAS  PubMed  Google Scholar 

  61. Ogihara T, Asano T, Ando K, Sakoda H, Anai M, Shojima N, et al. High-salt diet enhances insulin signaling and induces insulin resistance in Dahl salt-sensitive rats. Hypertension 2002;40:83–9.

    Article  CAS  PubMed  Google Scholar 

  62. Premilovac D, Richards SM, Rattigan S, Keske MA. A vascular mechanism for high-sodium-induced insulin resistance in rats. Diabetologia 2014;57:2586–95.

    Article  CAS  PubMed  Google Scholar 

  63. Williams VL, Martin RE, Franklin JL, Hardy RW, Messina JL. Injury-induced insulin resistance in adipose tissue. Biochem Biophys Res Commun 2012;421:442–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carter EA. Insulin resistance in burns and trauma. Nutr Rev 1998;56:S170–6.

    Article  CAS  PubMed  Google Scholar 

  65. Carter EA, Burks D, Fischman AJ, White M, Tompkins RG. Insulin resistance in thermally-injured rats is associated with post-receptor alterations in skeletal muscle, liver and adipose tissue. Int J Mol Med 2004; 14:653–61.

    CAS  PubMed  Google Scholar 

  66. Xin-Long C, Zhao-Fan X, Dao-Feng B, Jian-Guang T, Duo W. Insulin resistance following thermal injury: an animal study. Burns 2007;33:480–3.

    Article  PubMed  Google Scholar 

  67. Shen C-a Fagan S, Fischman AJ, Carter EE, Chai J-K, Lu X-M, et al. Effects of glucagon-like peptide 1 on glycemia control and its metabolic consequence after severe thermal injury—studies in an animal model. Surgery 2011;149:635–44.

    Article  PubMed  Google Scholar 

  68. Gauglitz GG, Herndon DN, Jeschke MG. Insulin resistance post-burn: underlying mechanisms and current therapeutic strategies. J Burn Care Res 2008;29:683.

    Article  PubMed  Google Scholar 

  69. Sugita M, Sugita H, Kim M, Mao J, Yasuda Y, Habiro M, et al. Inducible nitric oxide synthase deficiency ameliorates skeletal muscle insulin resistance but does not alter unexpected lower blood glucose levels after burn injury in C57BL/6 mice. Metabolism 2012;61:127–36.

    Article  CAS  PubMed  Google Scholar 

  70. Ma Y, Toth B, Keeton AB, Holland LT, Chaudry IH, Messina JL. Mechanisms of hemorrhage-induced hepatic insulin resistance: role of tumor necrosis factor-α. Endocrinology 2004;145:5168–76.

    Article  CAS  PubMed  Google Scholar 

  71. Thompson LH, Kim HT, Ma Y, Kokorina NA, Messina JL. Acute, muscle-type specific insulin resistance following injury. Mol Med 2008;14:715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kang L, Sebastian BM, Pritchard MT, Pratt BT, Previs SF, Nagy LE. Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol Clin Exp Res 2007;31:1581–8.

    Article  CAS  PubMed  Google Scholar 

  73. Lindtner C, Scherer T, Zielinski E, Filatova N, Fasshauer M, Tonks NK, et al. Binge drinking induces whole-body insulin resistance by impairing hypothalamic insulin action. Sci Transl Med 20135: 170ra14-ra14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. de la Monte S, Derdak Z, Wands JR. Alcohol, insulin resistance and the liver-brain axis. J Gastroenterol Hepatol 2012;27(Suppl. 2):33–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. King AJ. The use of animal models in diabetes research. Br J Pharmacol 2012;166:877–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Dallaqua B, et al. Streptozotocin-induced diabetes models: pathophysiological mechanisms and fetal outcomes. Biomed Res Int 2014;2014:819065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Arikawe A, Oyerinde A, Olatunji-Bello I, Obika L. Streptozotocin diabetes and insulin resistance impairment of spermatogenesis in adult rat testis: central Vs local mechanism. Niger J Physiol Sci 2013;27:171–9.

    Google Scholar 

  78. Freund P, Wolff H, Kühnle H. (−)-BM 13.0913: A new oral antidiabetic agent that improves insulin sensitivity in animal models of type II (non—insulin-dependent) diabetes mellitus. Metabolism 1995;44:570–6.

    Article  CAS  PubMed  Google Scholar 

  79. Srinivasan K, Viswanad B, Asrat L, Kaul C, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 2005;52:313–20.

    Article  CAS  PubMed  Google Scholar 

  80. Liu Q. Pioglitazone can ameliorate insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats. Acta Pharmacol Sin 2005;26:575–80.

    Article  CAS  PubMed  Google Scholar 

  81. Jung JY, Lim Y, Moon MS, Kim JY, Kwon O. Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutr Metab (Lond) 2011;8:18.

    Article  CAS  Google Scholar 

  82. Saleh S, El-Maraghy N, Reda E, Barakat W. Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by mangiferin: role of adiponectin and TNF-α. Anais Acad Bras Cienc 2014;86:1935–48.

    Article  CAS  Google Scholar 

  83. Li L, Li X, Zhou W, Messina JL. Acute psychological stress results in the rapid development of insulin resistance. J Endocrinol 2013;217:175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tsuneki H, Tokai E, Sugawara C, Wada T, Sakurai T, Sasaoka T. Hypothalamic orexin prevents hepatic insulin resistance induced by social defeat stress in mice. Neuropeptides 2013;47:213–9.

    Article  CAS  PubMed  Google Scholar 

  85. Ruzzin J, Wagman A, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia 2005;48:2119–30.

    Article  CAS  PubMed  Google Scholar 

  86. Severino C, Brizzi P, Solinas A, Secchi G, Maioli M, Tonolo G. Low-dose dexamethasone in the rat: a model to study insulin resistance. Am J Physiol Endocrinol Metab 2002;283:E367–73.

    Article  CAS  PubMed  Google Scholar 

  87. Petit F, Bagby GJ, Lang CH. Tumor necrosis factor mediates zymosan-induced increase in glucose flux and insulin resistance. Am J Physiol Endocrinol Metab 1995;268:E219–28.

    Article  CAS  Google Scholar 

  88. Wang L, Ku P, Chen S, Chung H, Yu Y, Cheng J. Insulin resistance induced by zymosan as a new animal model in mice. Horm Metab Res 2013;45: 736–740.

    Article  CAS  PubMed  Google Scholar 

  89. Cao W, Liu H-Y, Hong T, Liu Z. Excess exposure to insulin may be the primary cause of insulin resistance. Am J Physiol Endocrinol Metab 2010298: E372–E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang X, Mei S, Gu H, Guo H, Zha L, Cai J, et al. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet. J Endocrinol 2014;221:469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science 1996;274:1185–8.

    Article  CAS  PubMed  Google Scholar 

  92. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83:1263–71.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–32.

    Article  CAS  PubMed  Google Scholar 

  94. Yekollu SK, Thomas R, O’sullivan B. Targeting curcusomes to inflammatory dendritic cells inhibits NF-κB and improves insulin resistance in obese mice. Diabetes 2011;60:2928–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Oana F, Takeda H, Hayakawa K, Matsuzawa A, Akahane S, Isaji M, et al. Physiological difference between obese (fa/fa) Zucker rats and lean Zucker rats concerning adiponectin. Metabolism 2005;54:995–1001.

    Article  CAS  PubMed  Google Scholar 

  96. Vogel HG. Drug discovery and evaluation: pharmacological assays. Springer Science & Business Media; 2002.

    Google Scholar 

  97. Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z. A new genetically obesehyperglycemic rat (Wistar fatty). Diabetes 1981;30:1045–50.

    Article  CAS  PubMed  Google Scholar 

  98. Galli J, Li LS, Glaser A, Ostenson CG, Jiao H, Fakhrai-Rad H, et al. Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nat Genet 1996;12:31–7.

    Article  CAS  PubMed  Google Scholar 

  99. AitmanTJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 1999;21:76–83.

    Article  CAS  PubMed  Google Scholar 

  100. Gotoda T, Iizuka Y, Kato N, Osuga J, Bihoreau MT, Murakami T, et al. Absence of Cd36 mutation in the original spontaneously hypertensive rats with insulin resistance. Nat Genet 1999;22:226–8.

    Article  CAS  PubMed  Google Scholar 

  101. Pravenec M, Landa V, Zidek V, Musilova A, Kren V, Kazdova L, et al. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet 2001;27:156–8.

    Article  CAS  PubMed  Google Scholar 

  102. Ishida K, Mizuno A, Min Z, Sano T, Shima K. Which is the primary etiologic event in Otsuka Long-Evans Tokushima Fatty rats, a model of spontaneous non—insulin-dependent diabetes mellitus, insulin resistance, or impaired insulin secretion. Metabolism 1995;44:940–5.

    Article  CAS  PubMed  Google Scholar 

  103. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications: Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 1992;41:1422–8.

    Article  CAS  PubMed  Google Scholar 

  104. Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res 2007;125:451.

    CAS  PubMed  Google Scholar 

  105. Suzuki W, Iizuka S, Tabuchi M, Funo S, Yanagisawa T, Kimura M, et al. A new mouse model of spontaneous diabetes derived from ddY strain. Exp Anim 1999;48:181–9.

    Article  CAS  PubMed  Google Scholar 

  106. Collier G, SILVAA, Sanigorski A,Walder K, Yamamoto A, Zimmet P. Development of obesity and insulin resistance in the israeli sand rat (Psammomys obesus) does leptin play a role? Ann N Y Acad Sci 1997;827:50–63.

    Article  CAS  PubMed  Google Scholar 

  107. Abel ED, Peroni O, Kim JK, Kim Y-B, Boss O, Hadro E, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001;409:729–33.

    Article  CAS  PubMed  Google Scholar 

  108. Guillam MT, Hummler E, Schaerer E, Yeh JI, Birnbaum MJ, Beermann F, et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet 1997; 17:327–30.

    Article  CAS  PubMed  Google Scholar 

  109. Stenbit AE, Tsao TS, Li J, Burcelin R, Geenen DL, Factor SM, et al. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med 1997;3:1096–101.

    Article  CAS  PubMed  Google Scholar 

  110. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 2000;6:924–8.

    Article  CAS  PubMed  Google Scholar 

  111. Sone H, Suzuki H, Takahashi A, Yamada N. Disease model: hyperinsulinemia and insulin resistance: part A—targeted disruption of insulin signaling or glucose transport. Trends Mol Med 2001;7:320–2.

    Article  CAS  PubMed  Google Scholar 

  112. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw3rd EB, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001;292:1728–31.

    Article  CAS  PubMed  Google Scholar 

  113. Duan W, Guo Z, Jiang H, Ware M, Mattson MP. Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology 2003;144:2446–53.

    Article  CAS  PubMed  Google Scholar 

  114. Yang C, Coker KJ, Kim JK, Mora S, Thurmond DC, Davis AC, et al. Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. J Clin Invest 2001;107:1311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 1998;12:3182–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS. Goldstein JL: isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. Eur J Clin Invest 1997;99:846.

    Article  CAS  Google Scholar 

  117. Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem 2000;275: 8456–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Pilkhwal Sah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sah, S.P., Singh, B., Choudhary, S. et al. Animal models of insulin resistance: A review. Pharmacol. Rep 68, 1165–1177 (2016). https://doi.org/10.1016/j.pharep.2016.07.010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.07.010

Key-words

Navigation