Skip to main content
Log in

Current and future trends in the lipid lowering therapy

  • Review Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Atherosclerosis is an inflammatory disease that affects arterial wall. It leads to wall thickening and its instability. As a result a reduction in lumen diameter and blood flow is observed. This manifests predominantly as the affectation of vascular bed of coronary (myocardial infarction), cerebral, carotid (ischemic stroke) or peripheral arteries (limb amputation).

One of the most important factors that accelerate atherosclerosis is hyperlipidemia. According to current guidelines the main attention should be focused on the treatment of hyperlipidemia (beside the prevention, which includes proper diet, physical activity and risk factors avoidance). Major attention is given to LDL (low-density lipoprotein) cholesterol (LDL-C) level as primary, and triglyceride level as secondary targets of therapy.

As a result of recent clinical findings and continuous research in the field of hypolipidemic drugs it seems practical to review recent data and show potential new pathways that may be useful in the treatment of hyperlipidemia.

The review is divided into several parts presenting the widely used and well-known hypolipidemic drugs. In the first part a brief review of contemporary drugs affecting LDL cholesterol is shown. The second part contains information regarding currently available drugs reducing triglycerides level. The third part describes several novel and promising groups of drugs that are still on various steps of clinical development. In the last part drugs affecting HDL (high-density lipoprotein) level were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cardiovascular diseases statistics. Data extracted in October 2015. Available from: http://ec.europa.eu/eurostat/statistics-explained/index.php/Cardiovascular_diseases_statistics#Deaths_from_cardiovascular_diseases

  2. Sampson UK, Fazio S, Linton MF. Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr Atheroscler Rep 2012;14(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reiner Z. Managing the residual cardiovascular disease risk associated with HDL-cholesterol and triglycerides in statin-treated patients: a clinical update. Nutr Metab Cardiovasc Dis 2013;23(9):799–807.

    Article  CAS  PubMed  Google Scholar 

  4. Jacobson TA. Lipoprotein(a), cardiovascular disease, and contemporary management. Mayo Clin Proc 2013;88(11):1294–311.

    Article  CAS  PubMed  Google Scholar 

  5. LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart J-C, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 2005;352(14):1425–35.

    Article  CAS  PubMed  Google Scholar 

  6. Ewald N, Hardt PD, Kloer H-U. Severe hypertriglyceridemia and pancreatitis: presentation and management. Curr Opin Lipidol 2009;20(6):497–504.

    Article  CAS  PubMed  Google Scholar 

  7. Taskinen M-R, Borén J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 2015;239(2):483–95.

    Article  CAS  PubMed  Google Scholar 

  8. Catapano AL, Chapman J, Wiklund O, Taskinen M-R. The new joint EAS/ESC guidelines for the management of dyslipidaemias. Atherosclerosis 2011; 217(1):1.

    Article  PubMed  CAS  Google Scholar 

  9. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014;63(25 Pt B):2889–934.

    Article  PubMed  Google Scholar 

  10. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 2015;372(25):2387–97.

    Article  CAS  PubMed  Google Scholar 

  11. Boekholdt SM, Hovingh GK, Mora S, Arsenault BJ, Amarenco P, Pedersen TR, et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol 2014;64(5): 485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Preiss D, Seshasai SRK, Welsh P, Murphy SA, Ho JE, Waters DD, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA 2011;305(24):2556–64.

    Article  CAS  PubMed  Google Scholar 

  13. Maki KC, Ridker PM, Brown WV, Grundy SM, Sattar N. An assessment by the Statin Diabetes Safety Task Force: 2014 update. J Clin Lipidol 2014;8(3): S17–29.

    Article  PubMed  Google Scholar 

  14. Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta BBA — Mol Basis Dis 2015;1852(9):1765–78.

    Article  CAS  Google Scholar 

  15. Tziomalos K, Athyros VG, Paschos P, Karagiannis A. Nonalcoholic fatty liver disease and statins. Metabolism 2015;64(10):1215–23.

    Article  CAS  PubMed  Google Scholar 

  16. Jacobson TA. NLA Task Force on Statin Safety — 2014 update. J Clin Lipidol 2014;8(3):S1–4.

    Article  PubMed  Google Scholar 

  17. Rojas-Fernandez CH, Goldstein LB, Levey AI, Taylor BA, Bittner V. An assessment by the Statin Cognitive Safety Task Force: 2014 update. J Clin Lipidol 2014;8(3):S5–16.

    Article  PubMed  Google Scholar 

  18. Bays H, Cohen DE, Chalasani N, Harrison SA. An assessment by the Statin Liver Safety Task Force: 2014 update. J Clin Lipidol 2014;8(3):S47–57.

    Article  PubMed  Google Scholar 

  19. Rosenson RS, Baker SK, Jacobson TA, Kopecky SL, Parker BA. An assessment by the Statin Muscle Safety Task Force: 2014 update. J Clin Lipidol 2014;8(3):S58–71.

    Article  PubMed  Google Scholar 

  20. Kellick KA, Bottorff M, Toth PP. A clinician’s guide to statin drug-drug interactions. J Clin Lipidol 2014;8(3):S30–46.

    Article  PubMed  Google Scholar 

  21. Guyton JR, Bays HE, Grundy SM, Jacobson TA. An assessment by the Statin Intolerance Panel: 2014 update. J Clin Lipidol 2014;8(3):S72–81.

    Article  PubMed  Google Scholar 

  22. Chang T-Y, Chang C. Ezetimibe blocks internalization of the NPC1L1/cholesterol complex. Cell Metab 2008;7(6):469–71.

    Article  CAS  PubMed  Google Scholar 

  23. Davis HR, Veltri EP. Zetia: inhibition of Niemann-Pick C1 Like 1 (NPC1L1) to reduce intestinal cholesterol absorption and treat hyperlipidemia. J Atheroscler Thromb 2007;14(3):99–108.

    Article  CAS  PubMed  Google Scholar 

  24. Averna M. The effect of ezetimibe on NAFLD. Atheroscler Suppl 2015;17: 27–34.

    Article  PubMed  Google Scholar 

  25. Lau VWY, Journoud M, Jones PJH. Plant sterols are efficacious in lowering plasma LDL and non-HDL cholesterol in hypercholesterolemic type 2 diabetic and nondiabetic persons. Am J Clin Nutr 2005;81(6):1351–8.

    Article  CAS  PubMed  Google Scholar 

  26. Khandelwal S, Shidhaye R, Demonty I, Lakshmy R, Gupta R, Prabhakaran D, et al. Impact of omega-3 fatty acids and/or plant sterol supplementation on non-HDL cholesterol levels of dyslipidemic Indian adults. J Funct Foods 2013;5(1):36–43.

    Article  CAS  Google Scholar 

  27. Calpe-Berdiel L, Escolà-Gil JC, Blanco-Vaca F. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis 2009;203(1):18–31.

    Article  CAS  PubMed  Google Scholar 

  28. Malhotra A, Shafiq N, Arora A, Singh M, Kumar R, Malhotra S. Dietary interventions (plant sterols, stanols, omega-3 fatty acids, soy protein and dietary fibers) for familial hypercholesterolaemia. Cochrane Database Syst Rev 2014;6:CD001918.

    Google Scholar 

  29. Gylling H, Plat J, Turley S, Ginsberg HN, Ellegård L, Jessup W, et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014;232(2):346–60.

    Article  CAS  PubMed  Google Scholar 

  30. Burke FM. Red yeast rice for the treatment of dyslipidemia. Curr Atheroscler Rep 2015;17(4):495.

    Article  PubMed  CAS  Google Scholar 

  31. Aldridge MA, Ito MK. Colesevelam hydrochloride: a novel bile acid-binding resin. Ann Pharmacother 2001;35(7–8):898–907.

    Article  CAS  PubMed  Google Scholar 

  32. Davidson MH, Dillon MA, Gordon B, Jones P, Samuels J, Weiss S, et al. Colesevelam hydrochloride (cholestagel): a new, potent bile acid sequestrant associated with a low incidence of gastrointestinal side effects. Arch Intern Med 1999;159(16):1893–900.

    Article  CAS  PubMed  Google Scholar 

  33. Jones MR, Nwose OM. Role of colesevelam in combination lipid-lowering therapy. Am J Cardiovasc Drugs Drugs Dev Interv 2013;13(5):315–23.

    Article  CAS  Google Scholar 

  34. Sandhu S, Moosavi M, Golmohammadi K, Francis GA. Colesevelam as an add-on treatment for control of dyslipidemia and hyperglycemia in type 2 diabetes. CanJ Diabetes 2015. http://dx.doi.org/10.1016/j.jcjd.2015.07.008.

  35. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 2005;37(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  36. Serometrix Homepage. Available from: http://www.serometrix.com/pipeline.html [Accessed December 2015].

  37. SPC-5001. Available from: https://clinicaltrials.gov/ct2/show/NCT01350960?term=SPC-5001&rank=1 [Accessed December 2015].

  38. ALN-PCS02. Available from: https://clinicaltrials.gov/ct2/show/NCT01437059?term=ALN-PCS02&rank=1 [Accessed December 2015].

  39. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 2015;372(16):1489–99.

    Article  CAS  PubMed  Google Scholar 

  40. Stone NJ, Lloyd-Jones DM. Lowering LDL cholesterol is good, but how and in whom? N Engl J Med 2015;372(16):1564–5.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X-L, Zhu Q-Q, Zhu L, Chen J-Z, Chen Q-H, Li G-N, et al. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med 2015;13:123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Berthold HK, Seidah NG, Benjannet S, Gouni-Berthold I. Evidence from a randomized trial that simvastatin, but not ezetimibe, upregulates circulating PCSK9 levels. PLOS ONE 2013;8(3):e60095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwartz GG, Bessac L, Berdan LG, Bhatt DL, Bittner V, Diaz R, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J 2014;168(5):682–9.

    Article  CAS  PubMed  Google Scholar 

  44. Bandeali SJ, Daye J, Virani SS. Novel therapies for treating familial hypercholesterolemia. Curr Atheroscler Rep 2014;16(1):382.

    Article  PubMed  CAS  Google Scholar 

  45. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 2015;372(16):1500–9.

    Article  CAS  PubMed  Google Scholar 

  46. Cuchel M, Meagher EA, du Toit Theron H, Blom DJ, Marais AD, Hegele RA, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet Lond Engl 2013;381(9860):40–6.

    Article  CAS  Google Scholar 

  47. Stefanutti C, Julius U. Treatment of primary hypertriglyceridemia states — general approach and the role of extracorporeal methods. Atheroscler Suppl 2015;18:85–94.

    Article  PubMed  Google Scholar 

  48. Roeters van Lennep J, Averna M, Alonso R. Treating homozygous familial hypercholesterolemia in a real-world setting: experiences with lomitapide. J Clin Lipidol 2015;9(4):607–17.

    Article  PubMed  Google Scholar 

  49. Aggarwal D, West KL, Zern TL, Shrestha S, Vergara-Jimenez M, Fernandez ML. JTT-130, a microsomal triglyceride transfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs. BMC Cardiovasc Disord 2005;5:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kim E, Campbell S, Schueller O, Wong E, Cole B, Kuo J, et al. A small-molecule inhibitor of enterocytic microsomal triglyceride transfer protein, SLx-4090: biochemical, pharmacodynamic, pharmacokinetic, and safety profile. J Pharmacol Exp Ther 2011;337(3):775–85.

    Article  CAS  PubMed  Google Scholar 

  51. SLx-4090 in chylomicronemia. 2015 Oct. Available from: https://clinicaltrials.gov/ct2/show/NCT01675154

  52. Visser ME, Wagener G, Baker BF, Geary RS, Donovan JM, Beuers UHW, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur Heart J 2012;33(9):1142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McGowan MP, Tardif J-C, Ceska R, Burgess LJ, Soran H, Gouni-Berthold I, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS ONE 2012;7(11):e49006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Refusal of the marketing authorisation for Kynamro (mipomersen). Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-Initial_authorisation/human/002429/WC500140678.pdf [Accessed December 2015].

  55. Panta R, Dahal K, Kunwar S. Efficacy and safety of mipomersen in treatment of dyslipidemia: a meta-analysis of randomized controlled trials. J Clin Lipidol 2015;9(2):217–25.

    Article  PubMed  Google Scholar 

  56. A study of the safety and efficacy of two different regimens of mipomersen in patients with familial hypercholesterolemia and inadequately controlled low-density lipoprotein cholesterol (FOCUS FH). Available from: https://clinicaltrials.gov/ct2/show/NCT01475825?term=focus+fh&rank=1 [Accessed December 2015].

  57. Farnier M. Update on the clinical utility of fenofibrate in mixed dyslipidemias: mechanisms of action and rational prescribing. Vasc Health Risk Manag 2008;4(5):991–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee W-S, Kim J. Peroxisome proliferator-activated receptors and the heart: lessons from the past and future directions. PPAR Res 2015;2015: 271983.

    Article  PubMed  PubMed Central  Google Scholar 

  59. ACCORD. Study Group, Ginsberg HN, Elam MB, Lovato LC, Crouse JR, Leiter LA, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010;362(17):1563–74.

    Article  Google Scholar 

  60. Fruchart J-C. Selective peroxisome proliferator-activated receptor α modulators (SPPARMα): the next generation of peroxisome proliferator-activated receptor α-agonists. Cardiovasc Diabetol 2013;12:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang D, Liu B, Tao W, Hao Z, Liu M. Fibrates for secondary prevention of cardiovascular disease and stroke. Cochrane Database Syst Rev 2015;10: CD009580.

    Google Scholar 

  62. Davidson MH, Armani A, McKenney JM, Jacobson TA. Safety considerations with fibrate therapy. Am J Cardiol 2007;99(6A):3C–18C.

    Article  CAS  PubMed  Google Scholar 

  63. Davidson MH, Johnson J, Rooney MW, Kyle ML, Kling DF. A novel omega-3 free fattyacid formulation has dramaticallyimproved bioavailabilityduringa low-fat diet compared with omega-3-acid ethyl esters: the ECLlPSE (Epanova® compared to Lovaza® in a pharmacokinetic single-dose evaluation) study. J Clin Lipidol 2012;6(6):573–84.

    Article  PubMed  Google Scholar 

  64. Brinton EA, Ballantyne CM, Bays HE, Kastelein JJ, Braeckman RA, Soni PN. Effects of icosapent ethyl on lipid and inflammatory parameters in patients with diabetes mellitus-2, residual elevated triglycerides (200–500 mg/dL), and on statin therapy at LDL-C goal: the ANCHOR study. Cardiovasc Diabetol 2013;12:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bays HE, Braeckman RA, Ballantyne CM, Kastelein JJ, Otvos JD, Stirtan WG, et al. lcosapent ethyl, a pure EPA omega-3 fatty acid: effects on lipoprotein particle concentration and size in patients with very high triglyceride levels (the MARlNE study). J Clin Lipidol 2012;6(6):565–72.

    Article  PubMed  Google Scholar 

  66. Burnett JR, Hooper AJ. Alipogene tiparvovec, an adeno-associated virus encoding the Ser(447)X variant of the human lipoprotein lipase gene for the treatment of patients with lipoprotein lipase deficiency. Curr Opin Mol Ther 2009;11(6):681–91.

    CAS  PubMed  Google Scholar 

  67. Scott LJ. Alipogene Tiparvovec: a review of its use in adults with familial lipoprotein lipase deficiency. Drugs 2015;75(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  68. Kingwell BA, Chapman MJ, Kontush A, Miller NE. HDL-targeted therapies: progress, failures and future. Nat Rev Drug Discov 2014;13(6):445–64.

    Article  CAS  PubMed  Google Scholar 

  69. Koizumi J, Inazu A, Yagi K, Koizumi I, Uno Y, Kajinami K, et al. Serum lipoprotein lipid concentration and composition in homozygous and heterozygous patients with cholesteryl ester transfer protein deficiency. Atherosclerosis 1991;90(2–3):189–96.

    Article  CAS  PubMed  Google Scholar 

  70. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJP, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007;357(21):2109–22.

    Article  CAS  PubMed  Google Scholar 

  71. Kastelein JJP, Besseling J, Shah S, Bergeron J, Langslet G, Hovingh GK, et al. Anacetrapib as lipid-modifying therapy in patients with heterozygous familial hypercholesterolaemia (REALIZE): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet 2015;385(9983):2153–61.

    Article  CAS  PubMed  Google Scholar 

  72. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med 2012;367(22):2089–99.

    Article  CAS  PubMed  Google Scholar 

  73. Accelerate terminated. Available from: https://investor.lilly.com/releasedetail.cfm?ReleaseID=936130 [Accessed 12.12.15].

  74. Brinton EA, Kher U, Shah S, Cannon CP, Davidson M, Gotto AM, et al. Effects of anacetrapib on plasma lipids in specific patient subgroups in the DEFINE (Determining the Efficacy and Tolerability of CETP INhibition with AnacE-trapib) trial. J Clin Lipidol 2015;9(1):65–71.

    Article  PubMed  Google Scholar 

  75. Liaw Y-W, Lin C-Y, Lai Y-S, Yang T-C, Wang C-J, Whang-Peng J, et al. A vaccine targeted at CETP alleviates high fat and high cholesterol diet-induced atherosclerosis and non-alcoholic steatohepatitis in rabbit. PLOS ONE 2014;9(12):e111529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Larach DB, Cuchel M, Rader DJ. Monogenic causes ofelevated HDLcholesterol and implications for development of new therapeutics. Clin Lipidol 2013;8(6): 635–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gaudet D, Brisson D, Tremblay K, Alexander VJ, Singleton W, Hughes SG, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med 2014;371(23):2200–6.

    Article  PubMed  CAS  Google Scholar 

  78. Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med 2015;373(5):438–47.

    Article  CAS  PubMed  Google Scholar 

  79. Brandt TA, Lee RG, Digenio A, Graham MG, Crooke RM, Hughes SG, et al. ISIS-ANGPTL3RX, an antisense inhibitor to angiopoietin-like 3, reduces plasma lipid levels in mouse models and in healthy human volunteers. Atherosclerosis 2015;241(1):e30–1.

    Article  Google Scholar 

  80. Merki E, Graham M, Taleb A, Leibundgut G, Yang X, Miller ER, et al. Antisense oligonucleotide lowers plasma levels of apolipoprotein (a) and lipoprotein (a) in transgenic mice. J Am Coll Cardiol 2011;57(15):1611–21.

    Article  CAS  PubMed  Google Scholar 

  81. Pinkosky SL, Filippov S, Srivastava RAK, Hanselman JC, Bradshaw CD, Hurley TR, et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res 2013;54(1):134–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nikolic D, Mikhailidis DP, Davidson MH, Rizzo M, Banach M. ETC-1002: a future option for lipid disorders? Atherosclerosis 2014;237(2): 705–10.

    Article  CAS  PubMed  Google Scholar 

  83. Thompson PD, Rubino J, Janik MJ, MacDougall DE, McBride SJ, Margulies JR, et al. Use of ETC-1002 to treat hypercholesterolemia in patients with statin intolerance. J Clin Lipidol 2015;9(3):295–304.

    Article  PubMed  Google Scholar 

  84. Planned Studies of ETC-1002. Available from: http://www.esperion.com/therapies-progress/clinical-studies/ [Accessed December 2015].

  85. etc-1002 in http://www.clinicaltrials.gov. Available from: https://clinicaltrials.gov/ct2/results?term=etc-1002&Search=Search [Accessed December 2015].

  86. King AJ, Segreti JA, Larson KJ, Souers AJ, Kym PR, Reilly RM, et al. Diacylglycerol acyltransferase 1 inhibition lowers serum triglycerides in the Zucker fattyrat and the hyperlipidemic hamster. JPharmacol Exp Ther 2009;330(2): 526–31.

    Article  CAS  Google Scholar 

  87. Meyers C, Tremblay K, Amer A, Chen J, Jiang L, Gaudet D. Effect of the DGAT1 inhibitor pradigastat on triglyceride and apoB48 levels in patients with familial chylomicronemia syndrome. Lipids Health Dis 2015;14(1):8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Efficacy of LCQ908 on Cardiovascular Risk (im). Available from: https://clinicaltrials.gov/ct2/show/NCT01474434?term=lcq908&rank=4 [Accessed December 2015].

  89. A 12 Week Study in Patients With Type 2 Diabetes Mellitus (T2DM). Available from: https://clinicaltrials.gov/ct2/show/NCT00901979?term=lcq908&rank=10 [Accessed December 2015].

  90. Meyers CD, Amer A, Majumdar T, Chen J. Pharmacokinetics, pharmacodynamics, safety, and tolerability of pradigastat, a novel diacylglycerol acyltransferase 1 inhibitor in overweight or obese, but otherwise healthy human subjects. J Clin Pharmacol 2015;55(9):1031–41.

    Article  CAS  PubMed  Google Scholar 

  91. Jamkhande PG, Chandak PG, Dhawale SC, Barde SR, Tidke PS, Sakhare RS. Therapeutic approaches to drug targets in atherosclerosis. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc 2014;22(3):179–90.

    Google Scholar 

  92. Aikawa M, Rabkin E, Okada Y, Voglic SJ, Clinton SK, Brinckerhoff CE, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation 1998;97(24):2433–44.

    Article  CAS  PubMed  Google Scholar 

  93. López-Farré AJ, Sacristain D, Zamorano-León JJ, San-Martin N, Macaya C. Inhibition of Acyl-CoA cholesterol acyltransferase by F12511 (Eflucimibe): Could it be a new antiatherosclerotic therapeutic? Eflucimibe (F12511). Cardiovasc Drug Rev 2008;26(1):65–74.

    Article  CAS  Google Scholar 

  94. Nissen SE, Tuzcu EM, Brewer HB, Sipahi I, Nicholls SJ, Ganz P, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 2006;354(12):1253–63.

    Article  CAS  PubMed  Google Scholar 

  95. A trial of the safety efficacy of K-604 for the treatment of atherosclerosis. Available from: https://clinicaltrials.gov/ct2/show/NCT00851500?term=k604&rank=1 [Accessed December 2015].

  96. Ghirlanda G, Oradei A, Manto A, Lippa S, Uccioli L, Caputo S, et al. Evidence of plasma CoQ10-lowering effect by HMG-CoA reductase inhibitors: a double-blind, placebo-controlled study. J Clin Pharmacol 1993;33(3):226–9.

    Article  CAS  PubMed  Google Scholar 

  97. Discontinuation of development of TAK-475, a compound for treatment of hypercholesterolemia. Available from: http://www.takeda.com/news/2008/20080328_3603html [Accessed December 2015].

  98. Denison H, Nilsson C, Löfgren L, Himmelmann A, Mårtensson G, Knutsson M, et al. Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial. Diabetes Obes Metab 2014;16(4):334–43.

    Article  CAS  PubMed  Google Scholar 

  99. Ichikawa M, Ohtsuka M, Ohki H, Ota M, Haginoya N, Itoh M, et al. Discovery of DF-461, a potent squalene synthase inhibitor. ACS Med Chem Lett 2013;4(10):932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cheang WS, Tian XY, Wong WT, Huang Y. The peroxisome proliferatoractivated receptors in cardiovascular diseases: experimental benefits and clinical challenges. Br J Pharmacol 2015;172(23):5512–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lincoff AM, Tardif J-C, Schwartz GG, Nicholls SJ, Ryden L, Neal B, et al. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA 2014;311(15):1515–25.

    Article  PubMed  CAS  Google Scholar 

  102. Sahebkar A, Chew GT, Watts GF. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res 2014;56:47–66.

    Article  CAS  PubMed  Google Scholar 

  103. Olson EJ, Pearce GL, Jones NP, Sprecher DL. Lipid effects of peroxisome proliferator-activated receptor-8 agonist GW501516 in subjects with low high-density lipoprotein cholesterol: characteristics of metabolic syndrome. Arterioscler Thromb Vasc Biol 2012;32(9):2289–94.

    Article  CAS  PubMed  Google Scholar 

  104. Choi Y-J, Roberts BK, Wang X, Geaney JC, Naim S, Wojnoonski K, et al. Effects of the PPAR-δ agonist MBX-8025 on atherogenic dyslipidemia. Atherosclerosis 2012;220(2):470–6.

    Article  CAS  PubMed  Google Scholar 

  105. Study to evaluate the effects of MBX-8025 in patients with HoFH. Available from: https://clinicaltrials.gov/ct2/show/NCT02472535?term=mbx8025&rank=2 [Accessed December 2015].

  106. Cariou B, Zaïr Y, Staels B, Bruckert E. Effects of the new dual PPAR α/δ agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care 2011;34(9):2008–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cariou B, Hanf R, Lambert-Porcheron S, Zaïr Y, Sauvinet V, Noel B, et al. Dual peroxisome proliferator-activated receptor α/δ agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care 2013;36(10):2923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Phase IIb Study to Evaluate the Efficacy and Safety of GFT505 Versus Placebo in Patients With Non-Alcoholic Steatohepatitis (NASH). Available from: https://clinicaltrials.gov/ct2/show/NCT01694849?term=gft505&rank=4 [Accessed December 2015].

  109. Elafibranor Phase III. Available from: http://www.genfit.com/wp-content/uploads/2015/11/2015.11.16-PR-GENFIT-Ph3-Elafibranor.pdf [Accessed 12.12.15].

  110. Ratziu V, Harrison S, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 2016. http://dx.doi.org/10.1053/j.gastro.2016.01.038.

  111. Liu Z-M, Hu M, Chan P, Tomlinson B. Early investigational drugs targeting PPAR-a for the treatment of metabolic disease. Expert Opin Investig Drugs 2015;24(5):611–21.

    Article  CAS  PubMed  Google Scholar 

  112. K-877 Japanese Clinical Trials. Available from: http://www.clinicaltrials.jp/user/search/directCteDetail.jsp?clinicalTrialId=13036 [Accessed October 2015].

  113. Mandema JW, Hermann D, Wang W, Sheiner T, Milad M, Bakker-Arkema R, et al. Model-based development of gemcabene, a new lipid-altering agent. AAPS J 2005;7(3):E513–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Bays HE, McKenney JM, Dujovne CA, Schrott HG, Zema MJ, Nyberg J, et al. Effectiveness and tolerability of a new lipid-altering agent, gemcabene, in patients with low levels of high-density lipoprotein cholesterol. Am J Cardiol 2003;92(5):538–43.

    Article  CAS  PubMed  Google Scholar 

  115. Gemcabene web page. Available from: http://www.gemphire.com/products.php [Accessed September 2015].

  116. Phase 1 single and multiple ascending dose study of CAT-2003, a novel activator of lipoprotein lipase, demonstrates reductions in postprandial triglycerides. Available from: http://www.businesswire.com/news/home/20140331005014/en/Catabasis-Present-CAT-2003-Data-American-College-Cardiology%E2%80%99s.

  117. Bonde Y, Breuer O, Luïtjohann D, Sjoïberg S, Angelin B, Rudling M. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. JLipid Res 2014;55(11):2408–15.

    Article  CAS  Google Scholar 

  118. Ladenson PW, Kristensen JD, Ridgway EC, Olsson AG, Carlsson B, Klein I, et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N Engl J Med 2010;362(10):906–16.

    Article  CAS  PubMed  Google Scholar 

  119. Kannisto K, Rehnmark S, Slatis K, Webb P, Larsson L, Gåfvels M, et al. The thyroid receptor β modulator GC-1 reduces atherosclerosis in ApoE deficient mice. Atherosclerosis 2014;237(2):544–54.

    Article  CAS  PubMed  Google Scholar 

  120. Tancevski I, Demetz E, Eller P, Duwensee K, Hoefer J, Heim C, et al. The liver-selective thyromimetic T-0681 influences reverse cholesterol transport and atherosclerosis development in mice. PLoS ONE 2010;5(1):e8722.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol 2005;25(5):923–31.

    Article  CAS  PubMed  Google Scholar 

  122. Johnson JL, Shi Y, Snipes R, Janmohamed S, Rolfe TE, Davis B, et al. Effect of darapladib treatment on endarterectomy carotid plaque lipoprotein-associated phospholipase A2 activity: a randomized, controlled trial. PLOS ONE 2014;9(2):e89034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. STABILITY Investigators, White HD, Held C, Stewart R, Tarka E, Brown R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med 2014;370(18):1702–11.

    Article  CAS  Google Scholar 

  124. O’Donoghue ML, Braunwald E, White HD, Steen DP, Lukas MA, Tarka E, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA 2014; 312(10):1006–15.

    Article  PubMed  CAS  Google Scholar 

  125. Nicholls SJ, Kastelein JJP, Schwartz GG, Bash D, Rosenson RS, Cavender MA, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VlSTA-16 randomized clinical trial. JAMA 2014; 311(3):252–62.

    Article  CAS  PubMed  Google Scholar 

  126. Tawakol A, Singh P, Rudd JHF, Soffer J, Cai G, Vucic E, et al. Effect of treatment for 12 weeks with rilapladib, a lipoprotein-associated phospholipase A2 inhibitor, on arterial inflammation as assessed with 18F-fluorodeoxyglucose-positron emission tomography imaging. J Am Coll Cardiol 2014;63(1): 86–8.

    Article  CAS  PubMed  Google Scholar 

  127. Rilapladib in AD. Available from: https://clinicaltrials.gov/ct2/show/NCT01428453?term=rilapladib&rank=3 [Accessed October 2015].

  128. Nicholls SJ, Gordon A, Johansson J, Wolski K, Ballantyne CM, Kastelein JJP, et al. Efficacy and safety of a novel oral inducer of apolipoprotein a-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial. J Am Coll Cardiol 2011;57(9):1111–9.

    Article  CAS  PubMed  Google Scholar 

  129. Nicholls SJ, Puri R, Wolski K, Ballantyne CM, Barter PJ, Brewer HB, et al. Effect of the BET protein inhibitor, RVX-208, on progression of coronary atherosclerosis: results of the phase 2b, randomized, double-blind, multicenter, assure trial. Am J Cardiovasc Drugs 2016;16(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  130. BETonMACE. Available from: https://clinicaltrials.gov/ct2/show/NCT02586155?term=betonmace&rank=1 [Accessed 29.11.15].

  131. Franceschini G, Calabresi L, Sirtori CR. Apolipoprotein AI-Milano: altered lipid binding properties in a human apolipoprotein variant. Prog Clin Biol Res 1988;255:73–80.

    CAS  PubMed  Google Scholar 

  132. Waksman R, Torguson R, Kent KM, Pichard AD, Suddath WO, Satler LF, et al. A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high-density lipoprotein plasma infusions in patients with acute coronary syndrome. J Am Coll Cardiol 2010;55(24):2727–35.

    Article  PubMed  Google Scholar 

  133. CER-001; CARAT Study. Available from: https://clinicaltrials.gov/ct2/show/NCT02484378?term=cer-001&rank=1 [Accessed September 2015].

  134. CSL-112. Available from: https://clinicaltrials.gov/ct2/show/NCT02108262?term=csl-112&rank=1 [Accessed September 2015].

  135. Tardif J-C, Ballantyne CM, Barter P, Dasseux J-L, Fayad ZA, Guertin M-C, et al. Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J 2014;35(46):3277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tricoci P, D’Andrea DM, Gurbel PA, Yao Z, Cuchel M, Winston B, et al. Infusion of reconstituted high-density lipoprotein, CSL112, in patients with atherosclerosis: safety and pharmacokinetic results from a phase 2a randomized clinical trial. J Am Heart Assoc 2015;4(8).

  137. Statin pathway. Available from: https://en.wikipedia.org/wiki/File:StatinPathway_WP430.png [Accessed 10.12.15].

  138. Okopień B, Bułdak Ł. Perspektywy leczenia hipolipemizującego. ChorCywil-PraktLek-KardiolDiabetol 2015;4:23–30.

    Google Scholar 

  139. Okopień B, Kowalski J, Krysiak R, Łabuzek K, Stachura-Kułach A, Kułach A, et al. Monocyte suppressing action of fenofibrate. Pharmacol Rep PR 2005; 57(3):367–72.

    PubMed  Google Scholar 

  140. Krysiak R, Labuzek K, Okopień B. Effect of atorvastatin and fenofibric acid on adipokine release from visceral and subcutaneous adipose tissue of patients with mixed dyslipidemia and normolipidemic subjects. Pharmacol Rep PR 2009;61(6):1134–45.

    Article  CAS  PubMed  Google Scholar 

  141. Fraley AE, Schwartz GG, Olsson AG, Kinlay S, Szarek M, Rifai N, et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes. J Am Coll Cardiol 2009;53(23):2186–96.

    Article  CAS  PubMed  Google Scholar 

  142. Costet P, Hoffmann MM, Cariou B, Delasalle BG, Konrad T, Winkler K. Plasma PCSK9 is increased by Fenofibrate and Atorvastatin in a non-additive fashion in diabetic patients. Atherosclerosis 2010;212(1):246–51.

    Article  CAS  PubMed  Google Scholar 

  143. Buldak L, Dulawa-Buldak A, Labuzek K, Okopien B. Effects of 90-day hypolipidemic treatment on insulin resistance, adipokines and proinflammatory cytokines in patients with mixed hyperlipidemia and impaired fasting glucose. Int J Clin Pharmacol Ther 2012;50(11):805–13.

    Article  CAS  PubMed  Google Scholar 

  144. Nozue T, Michishita I, Mizuguchi I. Effects of ezetimibe on remnant-like particle cholesterol, lipoprotein (a), and oxidized low-density lipoprotein in patients with dyslipidemia. J Atheroscler Thromb 2010;17(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  145. Lakoski SG, Xu F, Vega GL, Grundy SM, Chandalia M, Lam C, et al. Indices of cholesterol metabolism and relative responsiveness to ezetimibe and simvastatin. J Clin Endocrinol Metab 2010;95(2):800–9.

    Article  CAS  PubMed  Google Scholar 

  146. Ottestad I, Ose L, Wennersberg MH, Granlund L, Kirkhus B, Retterstøl K Phytosterol capsules and serum cholesterol in hypercholesterolemia: a randomized controlled trial. Atherosclerosis 2013;228(2):421–5.

    Article  CAS  PubMed  Google Scholar 

  147. Simonen P, Stenman U-H, Gylling H. Serum proprotein convertase subtilisin/kexin type 9 concentration is not increased by plant stanol ester consumption in normo- to moderately hypercholesterolaemic non-obese subjects. The BLOOD FLOW intervention study. Clin Sci 2015;129(5):439–46.

    Article  CAS  Google Scholar 

  148. Cicero AFG, Derosa G, Parini A, Maffioli P, D’Addato S, Reggi A, et al. Red yeast rice improves lipid pattern, high-sensitivity C-reactive protein, and vascular remodeling parameters in moderately hypercholesterolemic Italian subjects. Nutr Res 2013;33(8):622–8.

    Article  CAS  PubMed  Google Scholar 

  149. Persson L, Cao G, Stahle L, Sjoberg BG, Troutt JS, Konrad RJ, et al. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler Thromb Vasc Biol 2010;30(12):2666–72.

    Article  CAS  PubMed  Google Scholar 

  150. Bard JM, Ose L, Hagen E, Duriez P, Pfister P, Fruchart JC, et al. Changes in plasma apolipoprotein B-containing lipoparticle levels following therapy with fluvastatin and cholestyramine. European Fluvastatin Study Group. Am J Cardiol 1995;76(2):65A–70A.

    CAS  Google Scholar 

  151. Farnier M, Bonnefous F, Debbas N, Irvine A. Comparative efficacy and safety of micronized fenofibrate and simvastatin in patients with primary type IIa or IIb hyperlipidemia. Arch Intern Med 1994;154(4):441–9.

    Article  CAS  PubMed  Google Scholar 

  152. Moriarty PM, Jacobson TA, Bruckert E, Thompson PD, Guyton JR, Baccara-Dinet MT, et al. Efficacy and safety of alirocumab, a monoclonal antibody to PCSK9, in statin-intolerant patients: Design and rationale of ODYSSEY ALTERNATlVE, a randomized phase 3 trial. J Clin Lipidol 2014;8(6): 554–61.

    Article  PubMed  Google Scholar 

  153. Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol 2014;63(23):2541–8.

    Article  CAS  PubMed  Google Scholar 

  154. Cuchel M, Meagher EA, du Toit Theron H, Blom DJ, Marais AD, Hegele RA, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 2013;381(9860):40–6.

    Article  CAS  PubMed  Google Scholar 

  155. Millar JS, Reyes-Soffer G, Jumes P, Dunbar RL, deGoma EM, Baer AL, et al. Anacetrapib lowers LDL by increasing ApoB clearance in mildly hypercholesterolemic subjects. J Clin Invest 2015;125(6):2510–22.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gutierrez MJ, Rosenberg NL, MacDougall DE, Hanselman JC, Margulies JR, Strange P, et al. Efficacy and safety of ETC-1002, a novel investigational low-density lipoprotein-cholesterol-lowering therapy for the treatment of patients with hypercholesterolemia and type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2014;34(3):676–83.

    Article  CAS  PubMed  Google Scholar 

  157. Ballantyne CM, Davidson MH, MacDougall DE, Bays HE, DiCarlo LA, Rosenberg NL, et al. Efficacy and safety of a novel dual modulator of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase in patients with hypercholesterolemia. J Am Coll Cardiol 2013; 62(13):1154–62.

    Article  CAS  PubMed  Google Scholar 

  158. Norata GD, Ballantyne CM, Catapano AL. New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs. Eur Heart J 2013; 34(June (24)):1783–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tardif J-C. Effects of the acyl coenzyme A: cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 2004;110(21): 3372–7.

    Article  CAS  PubMed  Google Scholar 

  160. Mohler ER, Ballantyne CM, Davidson MH, Hanefeld M, Ruilope LM, Johnson JL, et al. The effect of darapladib on plasma lipoprotein-associated phospholipase a2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent. J Am Coll Cardiol 2008;51(17):1632–41.

    Article  CAS  PubMed  Google Scholar 

  161. Angelin B, Kristensen JD, Eriksson M, Carlsson B, Klein I, Olsson AG, et al. Reductions in serum levels of LDL cholesterol, apolipoprotein B, triglycerides and lipoprotein(a) in hypercholesterolaemic patients treated with the liver-selective thyroid hormone receptor agonist eprotirome. J Intern Med 2015;277(3):331–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Bułdak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okopień, B., Bułdak, Ł. & Bołdys, A. Current and future trends in the lipid lowering therapy. Pharmacol. Rep 68, 737–747 (2016). https://doi.org/10.1016/j.pharep.2016.03.016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.03.016

Keywords

Navigation