Skip to main content
Log in

Modification of 5-methoxy-N, N-dimethyltryptamine-induced hyperactivity by monoamine oxidase A inhibitor harmaline in mice and the underlying serotonergic mechanisms

  • Original Research Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are indolealkylamine (IAA) drugs often abused together. Our recent studies have revealed the significant effects of co-administered harmaline, a monoamine oxidase inhibitor (MAOI), on 5-MeO-DMT pharmacokinetics and thermoregulation. This study was to delineate the impact of harmaline and 5-MeO-DMT on home-cage activity in mouse models, as well as the contribution of serotonin (5-HT) receptors.

Methods

Home-cage activities of individual animals were monitored automatically in the home cages following implantation of telemetry transmitters and administration of various doses of IAA drugs and 5-HT receptor antagonists. Area under the effect curve (AUEC) of mouse activity values were calculated by trapezoidal rule.

Results

High dose of harmaline (15 mg/kg, ip) alone caused an early-phase (0–45 min) hypoactivity in mice that was fully attenuated by 5-HT1A receptor antagonist WAY-100635, whereas a late-phase (45–180 min) hyperactivity that was reduced by 5-HT2A receptor antagonist MDL-100907. 5-MeO-DMT (10 and 20 mg/kg, ip) alone induced biphasic effects, an early-phase (0–45 min) hypoactivity that was completely attenuated by WAY-100635, and a late-phase (45–180 min) hyperactivity that was fully suppressed by MDL-100907. Interestingly, co-administration of MAOI harmaline (2–15 mg/kg) with a subthreshold dose of 5-MeO-DMT (2 mg/kg) induced excessive hyperactivities at late phase (45–180 min) that could be abolished by either WAY-100635 or MDL-100907.

Conclusions

Co-administration of MAOI with 5-MeO-DMT provokes excessive late-phase hyperactivity, which involves the activation of both 5-HT1A and 5-HT2A receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araujo AM, Carvalho F, Bastos Mde L, Guedes de Pinho P, Carvalho M. The hallucinogenic world of tryptamines: an updated review. Arch Toxicol 2015;89: 1151–73.

    Article  CAS  PubMed  Google Scholar 

  2. Yu AM. Indolealkylamines: biotransformations and potential drug-drug interactions. AAPS J 2008;10:242–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Halberstadt AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res 2015;277:99–120.

    Article  CAS  PubMed  Google Scholar 

  4. Bruno R, Matthews AJ, Dunn M, Alati R, McIlwraith F, Hickey S, et al. Emerging psychoactive substance use among regular ecstasy users in Australia. Drug Alcohol Depend 2012;124:19–25.

    Article  PubMed  Google Scholar 

  5. Halberstadt AL, Geyer MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 2011;61:364–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McKenna DJ. Clinical investigations of the therapeutic potential of ayahuasca: rationale and regulatory challenges. Pharmacol Ther 2004;102:111–29.

    Article  CAS  PubMed  Google Scholar 

  7. Winstock AR, Kaar S, Borschmann R. Dimethyltryptamine (DMT): prevalence, user characteristics and abuse liability in a large global sample. J Psychopharmacol 2014;28:49–54.

    Article  PubMed  CAS  Google Scholar 

  8. McIlhenny EH, Riba J, Barbanoj MJ, Strassman R, Barker SA. Methodology for and the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomed Chromatogr 2011;25:970–84.

    Article  CAS  PubMed  Google Scholar 

  9. Dea, DoJ. Schedules of controlled substances: placement of 5-methoxy-N,N-dimethyltryptamine into Schedule I of the Controlled Substances Act. Final rule. Fed Regist 2010;75:79296–300.

    Google Scholar 

  10. Dea, DoJ. Schedules of controlled substances: placement of alpha-methyltryptamine and 5-methoxy-N,N-diisopropyltryptamine into schedule I of the Controlled Substances Act. Final rule. Fed Regist 2004;69:58950–53.

    Google Scholar 

  11. Brush DE, Bird SB, Boyer EW. Monoamine oxidase inhibitor poisoning resulting from Internet misinformation on illicit substances. J Toxicol Clin Toxicol 2004;42:191–5.

    Article  CAS  PubMed  Google Scholar 

  12. Long H, Nelson LS, Hoffman RS. Alpha-methyltryptamine revisited via easy Internet access. Vet Hum Toxicol 2003;45:149.

    PubMed  Google Scholar 

  13. Muller AA. New drugs of abuse update: foxy Methoxy. J Emerg Nurs 2004;30:507–8.

    Article  PubMed  Google Scholar 

  14. Sklerov J, Levine B, Moore KA, King T, Fowler D. A fatal intoxication following the ingestion of 5-methoxy-N,N-dimethyltryptamine in an ayahuasca preparation. J Anal Toxicol 2005;29:838–41.

    Article  CAS  PubMed  Google Scholar 

  15. Smolinske SC, Rastogi R, Schenkel S. Foxy methoxy: a new drug of abuse. J Med Toxicol 2005;1:22–5.

    Article  PubMed  Google Scholar 

  16. Tanaka E, Kamata T, Katagi M, Tsuchihashi H, Honda K. A fatal poisoning with 5-methoxy-N,N-diisopropyltryptamine, Foxy. Forensic Sci Int 2006;163: 152–154.

    Article  CAS  PubMed  Google Scholar 

  17. Hill SL, Thomas SH. Clinical toxicology of newer recreational drugs. Clin Toxicol (Phila) 2011;49:705–19.

    Article  CAS  Google Scholar 

  18. Bjornstad K, Hulten P, Beck O, Helander A. Bioanalytical and clinical evaluation of 103 suspected cases of intoxications with psychoactive plant materials. Clin Toxicol (Phila) 2009;47:566–72.

    Article  CAS  Google Scholar 

  19. Fuse-Nagase Y, Nishikawa T. Prolonged delusional state triggered by repeated ingestion of aromatic liquid in a past 5-methoxy-N,N-diisopropyltryptamine abuser. Addict Sci Clin Pract 2013;8:9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ott J. Pharmepena-psychonautics: human intranasal, sublingual and oral pharmacology of 5-methoxy-N,N-dimethyl-tryptamine. J Psychoact Drugs 2001;33:403–7.

    Article  CAS  Google Scholar 

  21. Jiang XL, Shen HW, Mager DE, Yu AM. Pharmacokinetic interactions between monoamine oxidase A inhibitor harmaline and 5-methoxy-N,N-dimethyltryptamine, and the impact of CYP2D6 status. Drug Metab Dispos 2013;41: 975–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen HW, Jiang XL, Yu AM. Development of a LC-MS/MS method to analyze 5-methoxy-N,N-dimethyltryptamine and bufotenine, and application to pharmacokinetic study. Bioanalysis 2009;1:87–95.

    Article  CAS  PubMed  Google Scholar 

  23. Shen HW, Wu C, Jiang XL, Yu AM. Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-methoxy-N,N-dimethyltryptamine metabolism and pharmacokinetics. Biochem Pharmacol 2010;80:122–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen HW, Jiang XL, Winter JC, Yu AM. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metab 2010;11:659–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng J, Zhen Y, Miksys S, Beyoglu D, Krausz KW, Tyndale RF, et al. Potential role of CYP2D6 in the central nervous system. Xenobiotica 2013;43: 973–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halberstadt AL, Buell MR, Masten VL, Risbrough VB, Geyer MA. Modification of the effects of 5-methoxy-N,N-dimethyltryptamine on exploratory behavior in rats by monoamine oxidase inhibitors. Psychopharmacology (Berl) 2008;201: 55–66.

    Article  CAS  Google Scholar 

  27. Winter JC, Amorosi DJ, Rice KC, Cheng K, Yu AM. Stimulus control by 5-methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice. Pharmacol Biochem Behav 2011;99:311–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang XL, Shen HW, Yu AM. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors. Neuropharmacology 2015;89:342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Halberstadt AL, Nichols DE, Geyer MA. Behavioral effects of alpha,alpha,beta,-beta-tetradeutero-5-MeO-DMT in rats: comparison with 5-MeO-DMT administered in combination with a monoamine oxidase inhibitor. Psychopharmacology (Berl) 2012;221:709–18.

    Article  CAS  Google Scholar 

  30. Winter JC, Filipink RA, Timineri D, Helsley SE, Rabin RA. The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors. Pharmacol Biochem Behav 2000;65:75–82.

    Article  CAS  PubMed  Google Scholar 

  31. Riga MS, Soria G, Tudela R, Artigas F, Celada P. The natural hallucinogen 5-MeO-DMT, component of Ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs. Int J Neuropsychopharmacol 2014;17:1269–82.

    Article  CAS  PubMed  Google Scholar 

  32. van den Buuse M, Ruimschotel E, Martin S, Risbrough VB, Halberstadt AL. Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT(1A) receptor knockout mice: implications for schizophrenia. Neuropharmacology 2011;61:209–16.

    Article  PubMed  CAS  Google Scholar 

  33. Halberstadt AL, Koedood L, Powell SB, Geyer MA. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J Psychopharmacol 2011;25:1548–61.

    Article  CAS  PubMed  Google Scholar 

  34. Roth BL, Choudhary MS, Khan N, Uluer AZ. High-affinity agonist binding is not sufficient for agonist efficacy at 5-hydroxytryptamine2A receptors: evidence in favor of a modified ternary complex model. J Pharmacol Exp Ther 1997;280:576–83.

    CAS  PubMed  Google Scholar 

  35. Haberzettl R, Bert B, Fink H, Fox MA. Animal models of the serotonin syndrome: a systematic review. Behav Brain Res 2013;256C:328–45.

    Article  CAS  Google Scholar 

  36. Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med 2005;352:1112–20.

    Article  CAS  PubMed  Google Scholar 

  37. Kant S, Liebelt E. Recognizing serotonin toxicity in the pediatric emergency department. Pediatr Emerg Care 2012;28:817–21. quiz 22-24.

    Article  PubMed  Google Scholar 

  38. Kassai F, Kedves R, Gyertyan I, Tuka B, Fulop F, Toldi J, et al. Effect of a kynurenic acid analog on home-cage activity and body temperature in rats. Pharmacol Rep 2015;67:1188–92.

    Article  CAS  PubMed  Google Scholar 

  39. Gelzer AR, Ball HA. Validation of a telemetry system for measurement of blood pressure, electrocardiogram and locomotor activity in beagle dogs. Clin Exp Hypertens 1997;19:1135–60.

    Article  CAS  PubMed  Google Scholar 

  40. Vivanco P, Studholme KM, Morin LP. Drugs that prevent mouse sleep also block light-induced locomotor suppression, circadian rhythm phase shifts and the drop in core temperature. Neuroscience 2013;254:98–109.

    Article  CAS  PubMed  Google Scholar 

  41. Ossowska K, Wardas J, Berghauzen-Maciejewska K, Glowacka U, Kuter K, Pilc A, et al. Lu AF21934, a positive allosteric modulator of mGlu4 receptors, reduces the harmaline-induced hyperactivity but not tremor in rats. Neuropharmacology 2014;83:28–35.

    Article  CAS  PubMed  Google Scholar 

  42. Nasehi M, Jamshidi-Mehr M, Khakpai F, Zarrindast MR. Possible involvement of CA1 5-HT1B/1D and 5-HT2A/2B/2C receptors in harmaline-induced amnesia. Pharmacol Biochem Behav 2014;125:70–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ossowska K, Glowacka U, Kosmowska B, Wardas J. Apomorphine enhances harmaline-induced tremor in rats. Pharmacol Rep 2015;67:435–41.

    Article  CAS  PubMed  Google Scholar 

  44. Abdel-Fattah AF, Matsumoto K, Gammaz HA, Watanabe H. Hypothermic effect of harmala alkaloid in rats: involvement of serotonergic mechanism. Pharmacol Biochem Behav 1995;52:421–6.

    Article  CAS  PubMed  Google Scholar 

  45. Spencer Jr. DG, Glaser T, Traber J. Serotonin receptor subtype mediation of the interoceptive discriminative stimuli induced by 5-methoxy-N,N-dimethyltryptamine. Psychopharmacology (Berl) 1987;93:158–66.

    Article  CAS  Google Scholar 

  46. Abdel-Fattah AF, Matsumoto K, Murakami Y, Adel-Khalek Gammaz H, Mohamed MF, Watanabe H. Central serotonin level-dependent changes in body temperature following administration of tryptophan to pargyline- and harmaline-pretreated rats. Gen Pharmacol 1997;28:405–9.

    Article  CAS  PubMed  Google Scholar 

  47. Krebs-Thomson K, Ruiz EM, Masten V, Buell M, Geyer MA. The roles of 5-HT1A and 5-HT2 receptors in the effects of 5-MeO-DMT on locomotor activity and prepulse inhibition in rats. Psychopharmacology (Berl) 2006;189:319–29.

    Article  CAS  Google Scholar 

  48. Mittman SM, Geyer MA. Dissociation of multiple effects of acute LSD on exploratory behavior in rats by ritanserin and propranolol. Psychopharmacology (Berl) 1991;105:69–76.

    Article  CAS  Google Scholar 

  49. Palenicek T, Balikova M, Bubenikova-Valesova V, Horacek J. Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacology (Berl) 2008;196:51–62.

    Article  CAS  Google Scholar 

  50. Yu AM, Idle JR, Herraiz T, Kupfer A, Gonzalez FJ. Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 2003;13:307–19.

    Article  CAS  PubMed  Google Scholar 

  51. Yu AM, Idle JR, Krausz KW, Kupfer A, Gonzalez FJ. Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic beta-carboline alkaloids harmaline and harmine. J Pharmacol Exp Ther 2003;305: 315–22.

    Article  CAS  PubMed  Google Scholar 

  52. Wu C, Jiang XL, Shen HW, Yu AM. Effects of CYP2D6 status on harmaline metabolism, pharmacokinetics and pharmacodynamics, and a pharmacogenetics-based pharmacokinetic model. Biochem Pharmacol 2009;78:617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Ming Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, XL., Shen, HW. & Yu, AM. Modification of 5-methoxy-N, N-dimethyltryptamine-induced hyperactivity by monoamine oxidase A inhibitor harmaline in mice and the underlying serotonergic mechanisms. Pharmacol. Rep 68, 608–615 (2016). https://doi.org/10.1016/j.pharep.2016.01.008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.01.008

Keywords

Navigation