Skip to main content

Advertisement

Log in

The hallucinogenic world of tryptamines: an updated review

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In the area of psychotropic drugs, tryptamines are known to be a broad class of classical or serotonergic hallucinogens. These drugs are capable of producing profound changes in sensory perception, mood and thought in humans and act primarily as agonists of the 5-HT2A receptor. Well-known tryptamines such as psilocybin contained in Aztec sacred mushrooms and N,N-dimethyltryptamine (DMT), present in South American psychoactive beverage ayahuasca, have been restrictedly used since ancient times in sociocultural and ritual contexts. However, with the discovery of hallucinogenic properties of lysergic acid diethylamide (LSD) in mid-1900s, tryptamines began to be used recreationally among young people. More recently, new synthetically produced tryptamine hallucinogens, such as alpha-methyltryptamine (AMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), emerged in the recreational drug market, which have been claimed as the next-generation designer drugs to replace LSD (‘legal’ alternatives to LSD). Tryptamine derivatives are widely accessible over the Internet through companies selling them as ‘research chemicals’, but can also be sold in ‘headshops’ and street dealers. Reports of intoxication and deaths related to the use of new tryptamines have been described over the last years, raising international concern over tryptamines. However, the lack of literature pertaining to pharmacological and toxicological properties of new tryptamine hallucinogens hampers the assessment of their actual potential harm to general public health. This review provides a comprehensive update on tryptamine hallucinogens, concerning their historical background, prevalence, patterns of use and legal status, chemistry, toxicokinetics, toxicodynamics and their physiological and toxicological effects on animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams LM, Geyer MA (1985a) Effects of DOM and DMT in a proposed animal model of hallucinogenic activity. Prog Neuropsychopharmacol Biol Psychiatry 9(2):121–132

    CAS  PubMed  Google Scholar 

  • Adams LM, Geyer MA (1985b) A proposed animal model for hallucinogens based on LSD’s effects on patterns of exploration in rats. Behav Neurosci 99(5):881–900

    CAS  PubMed  Google Scholar 

  • Alatrash G, Majhail NS, Pile JC (2006) Rhabdomyolysis after ingestion of “foxy,” a hallucinogenic tryptamine derivative. Mayo Clin Proc 81(4):550–551. doi:10.4065/81.4.550

    PubMed  Google Scholar 

  • Anden NE, Corrodi H, Fuxe K, Hokfelt T (1968) Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide. Br J Pharmacol 34(1):1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Appel JB, Callahan PM (1989) Involvement of 5-HT receptor subtypes in the discriminative stimulus properties of mescaline. Eur J Pharmacol 159(1):41–46

    CAS  PubMed  Google Scholar 

  • Arbo MD, Bastos ML, Carmo HF (2012) Piperazine compounds as drugs of abuse. Drug Alcohol Depend 122(3):174–185. doi:10.1016/j.drugalcdep.2011.10.007

    CAS  PubMed  Google Scholar 

  • Arunotayanun W, Gibbons S (2012) Natural product ‘legal highs’. Nat Prod Rep 29(11):1304–1316. doi:10.1039/c2np20068f

    CAS  PubMed  Google Scholar 

  • Babu K, Boyer EW, Hernon C, Brush DE (2005) Emerging drugs of abuse. Clin Pediatr Emerg Med 6(2):81–84. doi:10.1016/j.cpem.2005.04.002

    Google Scholar 

  • Badham ER (1984) Ethnobotany of psilocybin mushrooms, especially Psilocybe cubensis. J Ethnopharmacol 10(2):249–254

    CAS  PubMed  Google Scholar 

  • Barker SA, Monti JA, Christian ST (1980) Metabolism of the hallucinogen N,N-dimethyltryptamine in rat brain homogenates. Biochem Pharmacol 29(7):1049–1057

    CAS  PubMed  Google Scholar 

  • Barker SA, McIlhenny EH, Strassman R (2012) A critical review of reports of endogenous psychedelic N,N-dimethyltryptamines in humans: 1955–2010. Drug Test Anal 4(7–8):617–635. doi:10.1002/dta.422

    CAS  PubMed  Google Scholar 

  • Benneyworth MA, Smith RL, Barrett RJ, Sanders-Bush E (2005) Complex discriminative stimulus properties of (+)lysergic acid diethylamide (LSD) in C57Bl/6J mice. Psychopharmacology 179(4):854–862. doi:10.1007/s00213-004-2108-z

    CAS  PubMed  Google Scholar 

  • Bjornstad K, Hulten P, Beck O, Helander A (2009) Bioanalytical and clinical evaluation of 103 suspected cases of intoxications with psychoactive plant materials. Clin Toxicol 47(6):566–572. doi:10.1080/15563650903037181

    Google Scholar 

  • Blair JB, Kurrasch-Orbaugh D, Marona-Lewicka D et al (2000) Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J Med Chem 43(24):4701–4710

    CAS  PubMed  Google Scholar 

  • Boland DM, Andollo W, Hime GW, Hearn WL (2005) Fatality due to acute alpha-methyltryptamine intoxication. J Anal Toxicol 29(5):394–397

    CAS  PubMed  Google Scholar 

  • Brandt SD, Freeman S, McGagh P, Abdul-Halim N, Alder JF (2004) An analytical perspective on favoured synthetic routes to the psychoactive tryptamines. J Pharm Biomed Anal 36(4):675–691. doi:10.1016/j.jpba.2004.08.022

    CAS  PubMed  Google Scholar 

  • Brimblecombe RW (1967) Hyperthermic effects of some tryptamine derivatives in relation to their behavioral activity. Int J Neuropharmacol 6(5):423–429

    CAS  PubMed  Google Scholar 

  • Brush DE, Bird SB, Boyer EW (2004) Monoamine oxidase inhibitor poisoning resulting from Internet misinformation on illicit substances. J Toxicol Clin Toxicol 42(2):191–195

    CAS  PubMed  Google Scholar 

  • Bullis RK (2008) The “vine of the soul” vs. the controlled substances act: implications of the hoasca case. J Psychoact Drugs 40(2):193–199. doi:10.1080/02791072.2008.10400630

    Google Scholar 

  • Bunzow JR, Sonders MS, Arttamangkul S et al (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60(6):1181–1188

    CAS  PubMed  Google Scholar 

  • Cakic V, Potkonyak J, Marshall A (2010) Dimethyltryptamine (DMT): subjective effects and patterns of use among Australian recreational users. Drug Alcohol Depend 111(1–2):30–37. doi:10.1016/j.drugalcdep.2010.03.015

    PubMed  Google Scholar 

  • Callaway CW, Wing LL, Geyer MA (1990) Serotonin release contributes to the locomotor stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 254(2):456–464

    CAS  PubMed  Google Scholar 

  • Callaway JC, Raymon LP, Hearn WL et al (1996) Quantitation of N,N-dimethyltryptamine and harmala alkaloids in human plasma after oral dosing with ayahuasca. J Anal Toxicol 20(6):492–497

    CAS  PubMed  Google Scholar 

  • Carbonaro TM, Forster MJ, Gatch MB (2013) Discriminative stimulus effects of N,N-diisopropyltryptamine. Psychopharmacology 226(2):241–246. doi:10.1007/s00213-012-2891-x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chamakura RP (1994) Bufotenine—a hallucinogen in ancient snuff powders of South America and a drug of abuse on the streets of New York City. Forensic Sci Rev 6:1–18

    Google Scholar 

  • Christian ST, Harrison R, Quayle E, Pagel J, Monti J (1977) The in vitro identification of dimethyltryptamine (DMT) in mammalian brain and its characterization as a possible endogenous neuroregulatory agent. Biochem Med 18(2):164–183

    CAS  PubMed  Google Scholar 

  • Clatts MC, Goldsamt LA, Yi H (2005) Club drug use among young men who have sex with men in NYC: a preliminary epidemiological profile. Subst Use Misuse 40(9–10):1317–1330. doi:10.1081/JA-200066898

    PubMed Central  PubMed  Google Scholar 

  • Colpaert FC, Niemegeers CJ, Janssen PA (1982) A drug discrimination analysis of lysergic acid diethylamide (LSD): in vivo agonist and antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, a LSD-antagonist. J Pharmacol Exp Ther 221(1):206–214

    CAS  PubMed  Google Scholar 

  • Compton DM, Dietrich KL, Selinger MC, Testa EK (2011) 5-methoxy-N,N-di(iso)propyltryptamine hydrochloride (Foxy)-induced cognitive deficits in rat after exposure in adolescence. Physiol Behav 103(2):203–209. doi:10.1016/j.physbeh.2011.01.021

    CAS  PubMed  Google Scholar 

  • Corkery JM, Durkin E, Elliott S, Schifano F, Ghodse AH (2012) The recreational tryptamine 5-MeO-DALT (N,N-diallyl-5-methoxytryptamine): a brief review. Prog Neuropsychopharmacol Biol Psychiatry 39(2):259–262. doi:10.1016/j.pnpbp.2012.05.022

    CAS  PubMed  Google Scholar 

  • Cozzi NV, Gopalakrishnan A, Anderson LL et al (2009) Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J Neural Transm 116(12):1591–1599. doi:10.1007/s00702-009-0308-8

    CAS  PubMed  Google Scholar 

  • Cunningham N (2008) Hallucinogenic plants of abuse. Emerg Med Australas 20(2):167–174. doi:10.1111/j.1742-6723.2008.01070.x

    PubMed  Google Scholar 

  • Cunningham KA, Appel JB (1987) Neuropharmacological reassessment of the discriminative stimulus properties of d-lysergic acid diethylamide (LSD). Psychopharmacology 91(1):67–73

    CAS  PubMed  Google Scholar 

  • Drug Enforcement Administration DoJ (2001) An encounter with 5-methoxy-N,N-diisopropyltryptamine. Microgram Bull 34:126

    Google Scholar 

  • Drug Enforcement Administration DoJ (2003) Schedules of controlled substances: temporary placement of alpha-methyltryptamine and 5-methoxy-N,N-diisopropyltryptamine into Schedule I. Final rule. Fed Regist 68(65):16427–16430

    Google Scholar 

  • Drug Enforcement Administration DoJ (2004) Schedules of controlled substances: placement of alpha-methyltryptamine and 5-methoxy-N,N-diisopropyltryptamine into Schedule I of the Controlled Substances Act. Final rule. Fed Regist 69(188):58950–58953

    Google Scholar 

  • Drugs Forum (2010) 5-MeO-DALT. Available at http://www.drugs-forum.com/forum/showwiki.php?title=5-MeODALT

  • Elder J, Shellehberger M (1962) Antagonism of lysergic acid diethylamide (LSD) induced hyperthermia. J Pharmacol Exp Ther 136:293–297

    CAS  Google Scholar 

  • Elliott S (2011) Current awareness of piperazines: pharmacology and toxicology. Drug Test Anal 3(7–8):430–438. doi:10.1002/dta.307

    CAS  PubMed  Google Scholar 

  • EMCDDA (2010) Annual report on the state of the drugs problem in Europe. Euro Surveill. doi:10.2810/33349. http://www.emcdda.europa.eu/

  • EMCDDA (2012) The EMCDDA annual report 2012: the state of the drugs problem in Europe. Euro Surveill. doi:10.2810/64775. http://www.emcdda.europa.eu/

  • EMCDDA (2014) European drug report 2014: trends and developments. Euro Surveill. doi:10.2810/32306. http://www.emcdda.europa.eu/

  • Erspamer V (1955) Observations on the fate of indolalkylamines in the organism. J Physiol 127(1):118–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fantegrossi WE, Harrington AW, Kiessel CL et al (2006) Hallucinogen-like actions of 5-methoxy-N,N-diisopropyltryptamine in mice and rats. Pharmacol Biochem Behav 83(1):122–129. doi:10.1016/j.pbb.2005.12.015

    CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Murnane KS, Reissig CJ (2008a) The behavioral pharmacology of hallucinogens. Biochem Pharmacol 75(1):17–33. doi:10.1016/j.bcp.2007.07.018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fantegrossi WE, Reissig CJ, Katz EB, Yarosh HL, Rice KC, Winter JC (2008b) Hallucinogen-like effects of N,N-dipropyltryptamine (DPT): possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents. Pharmacol Biochem Behav 88(3):358–365. doi:10.1016/j.pbb.2007.09.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fish MS, Johnson NM, Horning EC (1955a) Piptadenia alkaloids. Indole bases of Piptadenia peregrina (L) Benth and related species. J Am Chem Soc 77:5892–5895

    CAS  Google Scholar 

  • Fish MS, Johnson NM, Lawrence EP, Horning EC (1955b) Oxidative N-dealkylation. Biochim Biophys Acta 18(4):564–565

    CAS  PubMed  Google Scholar 

  • Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323(5916):934–937. doi:10.1126/science.1166127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franzen F, Gross H (1965) Tryptamine, N,N-dimethyltryptamine, N,N-dimethyl-5-hydroxytryptamine and 5-methoxytryptamine in human blood and urine. Nature 206(988):1052

    CAS  PubMed  Google Scholar 

  • Freeman S, Alder JF (2002) Arylethylamine psychotropic recreational drugs: a chemical perspective. Eur J Med Chem 37(7):527–539

    CAS  PubMed  Google Scholar 

  • Fuse-Nagase Y, Nishikawa T (2013) Prolonged delusional state triggered by repeated ingestion of aromatic liquid in a past 5-methoxy-N,N-diisopropyltryptamine abuser. Addict Sci Clin Pract 8(1):9. doi:10.1186/1940-0640-8-9

    PubMed Central  PubMed  Google Scholar 

  • Gable RS (2007) Risk assessment of ritual use of oral dimethyltryptamine (DMT) and harmala alkaloids. Addiction 102(1):24–34. doi:10.1111/j.1360-0443.2006.01652.x

    PubMed  Google Scholar 

  • Gatch MB, Rutledge MA, Carbonaro T, Forster MJ (2009) Comparison of the discriminative stimulus effects of dimethyltryptamine with different classes of psychoactive compounds in rats. Psychopharmacology 204(4):715–724. doi:10.1007/s00213-009-1501-z

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geyer MA, Light RK, Rose GJ et al (1979) A characteristic effect of hallucinogens on investigatory responding in rats. Psychopharmacology 65(1):35–40

    CAS  PubMed  Google Scholar 

  • Gibbons S (2012) ‘Legal highs’-novel and emerging psychoactive drugs: a chemical overview for the toxicologist. Clin Toxicol 50(1):15–24. doi:10.3109/15563650.2011.645952

    CAS  Google Scholar 

  • Glennon RA (1986) Discriminative stimulus properties of the serotonergic agent 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Life Sci 39(9):825–830

    CAS  PubMed  Google Scholar 

  • Glennon RA (1996) Classical hallucinogens. In: Schuster CR, Kuhar MJ (eds) Pharmacological aspects of drug dependence. Handbook of experimental pharmacology, Springer, Basel, pp 343–371

  • Glennon RA, Rosecrans JA, Young R, Gaines J (1979) Hallucinogens as a discriminative stimuli: generalization of DOM to a 5-methoxy-N,N-dimethyltryptamine stimulus. Life Sci 24(11):993–997

    CAS  PubMed  Google Scholar 

  • Glennon RA, Young R, Rosecrans JA (1983) Antagonism of the effects of the hallucinogen DOM and the purported 5-HT agonist quipazine by 5-HT2 antagonists. Eur J Pharmacol 91(2–3):189–196

    CAS  PubMed  Google Scholar 

  • Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35(25):2505–2511

    CAS  PubMed  Google Scholar 

  • Glennon RA, Titeler M, Seggel MR, Lyon RA (1987) N-methyl derivatives of the 5-HT2 agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J Med Chem 30(5):930–932

    CAS  PubMed  Google Scholar 

  • Glennon RA, Chaurasia C, Titeler M (1990) Binding of indolylalkylamines at 5-HT2 serotonin receptors: examination of a hydrophobic binding region. J Med Chem 33(10):2777–2784

    CAS  PubMed  Google Scholar 

  • Gonzalez-Maeso J, Weisstaub NV, Zhou M et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452. doi:10.1016/j.neuron.2007.01.008

    CAS  PubMed  Google Scholar 

  • Government P (2013) Decreto Lei no. 54/2013. In: Justiça Dd (ed). Diário da República 75

  • Gresch PJ, Barrett RJ, Sanders-Bush E, Smith RL (2007) 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide. J Pharmacol Exp Ther 320(2):662–669. doi:10.1124/jpet.106.112946

    CAS  PubMed  Google Scholar 

  • Guchhait RB (1976) Biogenesis of 5-methoxy-N,N-dimethyltryptamine in human pineal gland. J Neurochem 26(1):187–190

    CAS  PubMed  Google Scholar 

  • Gutsche B, Grun C, Scheutzow D, Herderich M (1999) Tryptophan glycoconjugates in food and human urine. Biochem J 343(Pt 1):11–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagenbach D, Werthmuller L (2011) Mystic chemist: the life of Albert Hofmann and his discovery of LSD. Synergetic Press, Santa Fe, New Mexico

    Google Scholar 

  • Halberstadt AL, Geyer MA (2011) Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61(3):364–381. doi:10.1016/j.neuropharm.2011.01.017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halberstadt A, Geyer M (2013) Neuropharmacology of lysergic acid diethylamide (LSD) and other hallucinogens. In: Miller P (ed) Biological research on addiction: comprehensive addictive behaviors and disorders, vol 2. Elsevier, London, pp 625–635

  • Halberstadt AL, Buell MR, Masten VL, Risbrough VB, Geyer MA (2008) Modification of the effects of 5-methoxy-N,N-dimethyltryptamine on exploratory behavior in rats by monoamine oxidase inhibitors. Psychopharmacology 201(1):55–66. doi:10.1007/s00213-008-1247-z

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halberstadt AL, Koedood L, Powell SB, Geyer MA (2011) Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J Psychopharmacol 25(11):1548–1561. doi:10.1177/0269881110388326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halpern JH (2004) Hallucinogens and dissociative agents naturally growing in the United States. Pharmacol Ther 102(2):131–138. doi:10.1016/j.pharmthera.2004.03.003

    CAS  PubMed  Google Scholar 

  • Handovsky H (1920) Ein Alkaloid in Gifte von Bufo vulgaris. Arch Exp Pathol Pharmacol 86:138–158

    CAS  Google Scholar 

  • Hasler F, Bourquin D, Brenneisen R, Bar T, Vollenweider FX (1997) Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharm Acta Helv 72(3):175–184

    CAS  PubMed  Google Scholar 

  • Hasler F, Bourquin D, Brenneisen R, Vollenweider FX (2002) Renal excretion profiles of psilocin following oral administration of psilocybin: a controlled study in man. J Pharm Biomed Anal 30(2):331–339

    CAS  PubMed  Google Scholar 

  • Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX (2004) Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology 172(2):145–156. doi:10.1007/s00213-003-1640-6

    CAS  PubMed  Google Scholar 

  • Helsley S, Fiorella D, Rabin RA, Winter JC (1998) A comparison of N,N-dimethyltryptamine, harmaline, and selected congeners in rats trained with LSD as a discriminative stimulus. Prog Neuropsychopharmacol Biol Psychiatry 22(4):649–663

    CAS  PubMed  Google Scholar 

  • Hill SL, Thomas SH (2011) Clinical toxicology of newer recreational drugs. Clin Toxicol 49(8):705–719. doi:10.3109/15563650.2011.615318

    CAS  Google Scholar 

  • Hirschhorn ID, Winter JC (1971) Mescaline and lysergic acid diethylamide (LSD) as discriminative stimuli. Psychopharmacologia 22(1):64–71

    CAS  PubMed  Google Scholar 

  • Hofmann A (1976) LSD: My problem child. McGraw Hill, New York

    Google Scholar 

  • Hollister LE (1964) Chemical Psychoses. Annu Rev Med 15:203–214. doi:10.1146/annurev.me.15.020164.001223

    CAS  PubMed  Google Scholar 

  • Horita A, Dille JM (1954) Pyretogenic effect of lysergic acid diethylamide. Science 120(3131):1100–1101

    CAS  PubMed  Google Scholar 

  • Horita A, Gogerty JH (1958) The pyretogenic effect of 5-hydroxytryptophan and its comparison with that of LSD. J Pharmacol Exp Ther 122(2):195–200

    CAS  PubMed  Google Scholar 

  • Horita A, Weber LJ (1961) The enzymic dephosphorylation and oxidation of psilocybin and psilocin by mammalian tissue homogenates. Biochem Pharmacol 7:47–54

    CAS  PubMed  Google Scholar 

  • Hoshino T, Shimodaira K (1935) Synthese des Bufotenins und über 3-Methyl-3-β-oxyäthyl-indolenin. Synthesen in der Indol-Gruppe. XIV. Justus Liebigs Annalen der Chemie 520(1):19–30. doi:10.1002/jlac.19355200104

    CAS  Google Scholar 

  • Ikeda A, Sekiguchi K, Fujita K, Yamadera H, Koga Y (2005) 5-methoxy-N,N-diisopropyltryptamine-induced flashbacks. Am J Psychiatry 162(4):815. doi:10.1176/appi.ajp.162.4.815

    PubMed  Google Scholar 

  • Isbell H (1959) Comparison of the reactions induced by psilocybin and LSD-25 in man. Psychopharmacologia 1:29–38

    CAS  PubMed  Google Scholar 

  • Itokawa M, Iwata K, Takahashi M et al (2007) Acute confusional state after designer tryptamine abuse. Psychiatry Clin Neurosci 61(2):196–199. doi:10.1111/j.1440-1819.2007.01638.x

    CAS  PubMed  Google Scholar 

  • Jovel A, Felthous A, Bhattacharyya A (2014) Delirium due to intoxication from the novel synthetic tryptamine 5-MeO-DALT. J Forensic Sci 59(3):844–846. doi:10.1111/1556-4029.12367

    CAS  PubMed  Google Scholar 

  • Kamata T, Katagi M, Kamata HT et al (2006) Metabolism of the psychotomimetic tryptamine derivative 5-methoxy-N,N-diisopropyltryptamine in humans: identification and quantification of its urinary metabolites. Drug Metab Dispos 34(2):281–287. doi:10.1124/dmd.105.005835

    CAS  PubMed  Google Scholar 

  • Kamata T, Katagi M, Tsuchihashi H (2010) Metabolism and toxicological analyses of hallucinogenic tryptamine analogues being abused in Japan. Forensic Toxicol 28(1):1–8. doi:10.1007/s11419-009-0087-9

    CAS  Google Scholar 

  • Kanamori T, Kuwayama K, Tsujikawa K et al (2006) In vivo metabolism of 5-methoxy-N,N-diisopropyltryptamine in rat. J Health Sci 52(4):425–430

    CAS  Google Scholar 

  • Kaplan J, Mandel LR, Stillman R et al (1974) Blood and urine levels of N,N-dimethyltryptamine following administration of psychoactive dosages to human subjects. Psychopharmacologia 38(3):239–245

    CAS  PubMed  Google Scholar 

  • Katagi M, Tsutsumi H, Miki A, Nakajima K, Tsuchihashi H (2002) Analysis of clandestine tablets of amphetamines and their related designer drugs encountered in recent Japan. Jpn J Forensic Toxicol 20:303–319

    CAS  Google Scholar 

  • Katz DP, Bhattacharya D, Bhattacharya S et al (2014) Synthetic cathinones: “a khat and mouse game”. Toxicol Lett 229(2):349–356. doi:10.1016/j.toxlet.2014.06.020

    CAS  PubMed  Google Scholar 

  • Kikura-Hanajiri R, Hayashi M, Saisho K, Goda Y (2005) Simultaneous determination of nineteen hallucinogenic tryptamines/beta-calbolines and phenethylamines using gas chromatography-mass spectrometry and liquid chromatography-electrospray ionisation-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 825(1):29–37. doi:10.1016/j.jchromb.2005.01.041

    CAS  PubMed  Google Scholar 

  • Kim H, Sablin SO, Ramsay RR (1997) Inhibition of monoamine oxidase A by beta-carboline derivatives. Arch Biochem Biophys 337(1):137–142. doi:10.1006/abbi.1996.9771

    CAS  PubMed  Google Scholar 

  • Kjellgren A, Soussan C (2011) Heaven and hell—a phenomenological study of recreational use of 4-HO-MET in Sweden. J Psychoact Drugs 43(3):211–219

    Google Scholar 

  • Klette KL, Anderson CJ, Poch GK, Nimrod AC, ElSohly MA (2000) Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes. J Anal Toxicol 24(7):550–556

    CAS  PubMed  Google Scholar 

  • Koerner J, Appel JB (1982) Psilocybin as a discriminative stimulus: lack of specificity in an animal behavior model for ‘hallucinogens’. Psychopharmacology 76(2):130–135

    CAS  PubMed  Google Scholar 

  • Krebs KM, Geyer MA (1993) Behavioral characterization of alpha-ethyltryptamine, a tryptamine derivative with MDMA-like properties in rats. Psychopharmacology 113(2):284–287

    CAS  PubMed  Google Scholar 

  • Lee S-F, Hsu J, Tsay W-I (2013) The trend of drug abuse in Taiwan during the years 1999 to 2011. J Food Drug Anal 21:390–396

    Google Scholar 

  • Leino M, Airaksinen MM (1985) Methoxyindoles of the retina. Med Biol 63(4):160–169

    CAS  PubMed  Google Scholar 

  • Lessin AW, Long RF, Parkes MW (1965) Central Stimulant Actions of Alpha-Alkyl Substituted Tryptamines in Mice. Br J Pharmacol Chemother 24:49–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li JX, Rice KC, France CP (2008) Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane in rhesus monkeys. J Pharmacol Exp Ther 324(2):827–833. doi:10.1124/jpet.107.130625

    CAS  PubMed  Google Scholar 

  • Manske R (1931) A synthesis of the methyltryptamines and some derivatives. Can J Res 5:592–600

    CAS  Google Scholar 

  • Marek GJ, Aghajanian GK (1996) LSD and the phenethylamine hallucinogen are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J Pharmacol Exp Ther 278(3):1373–1382

    CAS  PubMed  Google Scholar 

  • Marona-Lewicka D, Thisted RA, Nichols DE (2005) Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology 180(3):427–435. doi:10.1007/s00213-005-2183-9

    CAS  PubMed  Google Scholar 

  • Matsushima Y, Eguchi F, Kikukawa T, Matsuda T (2009) Historical overview of psychoactive mushrooms. Inflamm Regen 29(1):47–58

    CAS  Google Scholar 

  • Maxwell JC (2014) Psychoactive substances–some new, some old: a scan of the situation in the U.S. Drug Alcohol Depend 134:71–77. doi:10.1016/j.drugalcdep.2013.09.011

    PubMed  Google Scholar 

  • McIlhenny EH, Riba J, Barbanoj MJ, Strassman R, Barker SA (2011) Methodology for and the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomed Chromatogr 25(9):970–984. doi:10.1002/bmc.1551

    CAS  PubMed  Google Scholar 

  • McIlhenny EH, Riba J, Barbanoj MJ, Strassman R, Barker SA (2012) Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomed Chromatogr 26(3):301–313. doi:10.1002/bmc.1657

    CAS  PubMed  Google Scholar 

  • McKenna DJ (2004) Clinical investigations of the therapeutic potential of ayahuasca: rationale and regulatory challenges. Pharmacol Ther 102(2):111–129. doi:10.1016/j.pharmthera.2004.03.002

    CAS  PubMed  Google Scholar 

  • McKenna DJ, Towers GH, Abbott F (1984) Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and beta-carboline constituents of ayahuasca. J Ethnopharmacol 10(2):195–223

    CAS  PubMed  Google Scholar 

  • McKenna DJ, Repke DB, Lo L, Peroutka SJ (1990) Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29(3):193–198

    CAS  PubMed  Google Scholar 

  • Meatherall R, Sharma P (2003) Foxy, a designer tryptamine hallucinogen. J Anal Toxicol 27(5):313–317

    CAS  PubMed  Google Scholar 

  • Metzner R (1998) Hallucinogenic drugs and plants in psychotherapy and shamanism. J Psychoact Drugs 30(4):333–341. doi:10.1080/02791072.1998.10399709

    CAS  Google Scholar 

  • Mittman SM, Geyer MA (1991) Dissociation of multiple effects of acute LSD on exploratory behavior in rats by ritanserin and propranolol. Psychopharmacology 105(1):69–76

    CAS  PubMed  Google Scholar 

  • Monteiro MS, Bastos ML, de Pinho PG, Carvalho M (2013) Update on 1-benzylpiperazine (BZP) party pills. Arch Toxicol 87(6):929–947. doi:10.1007/s00204-013-1057-x

    CAS  PubMed  Google Scholar 

  • Moretti C, Gaillard Y, Grenand P, Bevalot F, Prevosto JM (2006) Identification of 5-hydroxy-tryptamine (bufotenine) in takini (Brosimumacutifolium Huber subsp. acutifolium C.C. Berg, Moraceae), a shamanic potion used in the Guiana Plateau. J Ethnopharmacol 106(2):198–202. doi:10.1016/j.jep.2005.12.022

    CAS  PubMed  Google Scholar 

  • Muller AA (2004) New drugs of abuse update: foxy Methoxy. J Emerg Nurs 30(5):507–508. doi:10.1016/j.jen.2004.07.037

    PubMed  Google Scholar 

  • Musselman ME, Hampton JP (2014) “Not for human consumption”: a review of emerging designer drugs. Pharmacotherapy 34(7):745–757. doi:10.1002/phar.1424

    PubMed  Google Scholar 

  • Musshoff F, Daldrup T, Bonte W, Leitner A, Lesch OM (1996) Formaldehyde-derived tetrahydroisoquinolines and tetrahydro-beta-carbolines in human urine. J Chromatogr B Biomed Appl 683(2):163–176

    CAS  PubMed  Google Scholar 

  • Nagai F, Nonaka R, Satoh Hisashi Kamimura K (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559(2–3):132–137. doi:10.1016/j.ejphar.2006.11.075

    CAS  PubMed  Google Scholar 

  • Narasimhachari N, Heller B, Spaide J et al (1971) Urinary studies of schizophrenics and controls. Biol Psychiatry 3(1):9–20

    CAS  PubMed  Google Scholar 

  • Narimatsu S, Yonemoto R, Saito K et al (2006) Oxidative metabolism of 5-methoxy-N,N-diisopropyltryptamine (Foxy) by human liver microsomes and recombinant cytochrome P450 enzymes. Biochem Pharmacol 71(9):1377–1385. doi:10.1016/j.bcp.2006.01.015

    CAS  PubMed  Google Scholar 

  • Narimatsu S, Yonemoto R, Masuda K et al (2008) Oxidation of 5-methoxy-N,N-diisopropyltryptamine in rat liver microsomes and recombinant cytochrome P450 enzymes. Biochem Pharmacol 75(3):752–760. doi:10.1016/j.bcp.2007.09.019

    CAS  PubMed  Google Scholar 

  • Nelson ME, Bryant SM, Aks SE (2014) Emerging drugs of abuse. Emerg Med Clin N Am 32(1):1–28. doi:10.1016/j.emc.2013.09.001

    Google Scholar 

  • Nichols DE (2004) Hallucinogens. Pharmacol Ther 101(2):131–181. doi:10.1016/j.pharmthera.2003.11.002

    CAS  PubMed  Google Scholar 

  • Nichols DE (2013) Serotonin, and the past and future of LSD. MAPS Bull 23(1):20–23

    Google Scholar 

  • Ott J (1999) Pharmahuasca: human pharmacology of oral DMT plus harmine. J Psychoact Drugs 31(2):171–177. doi:10.1080/02791072.1999.10471741

    CAS  Google Scholar 

  • Ott J (2001a) Pharmanopo-psychonautics: human intranasal, sublingual, intrarectal, pulmonary and oral pharmacology of bufotenine. J Psychoact Drugs 33(3):273–281. doi:10.1080/02791072.2001.10400574

    CAS  Google Scholar 

  • Ott J (2001b) Pharmepena-psychonautics: human intranasal, sublingual and oral pharmacology of 5-methoxy-N,N-dimethyl-tryptamine. J Psychoact Drugs 33(4):403–407. doi:10.1080/02791072.2001.10399925

    CAS  Google Scholar 

  • Ouagazzal A, Grottick AJ, Moreau J, Higgins GA (2001) Effect of LSD on prepulse inhibition and spontaneous behavior in the rat. A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology 25(4):565–575. doi:10.1016/S0893-133X(01)00282-2

    CAS  PubMed  Google Scholar 

  • Peden NR, Bissett AF, Macaulay KE, Crooks J, Pelosi AJ (1981) Clinical toxicology of “magic mushroom” ingestion. Postgrad Med J 57(671):543–545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce PA, Peroutka SJ (1989) Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex. Psychopharmacology 97(1):118–122

    CAS  PubMed  Google Scholar 

  • Poch GK, Klette KL, Hallare DA et al (1999) Detection of metabolites of lysergic acid diethylamide (LSD) in human urine specimens: 2-oxo-3-hydroxy-LSD, a prevalent metabolite of LSD. J Chromatogr B Biomed Sci Appl 724(1):23–33

    CAS  PubMed  Google Scholar 

  • Poch GK, Klette KL, Anderson C (2000) The quantitation of 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) in human urine specimens, a metabolite of LSD: comparative analysis using liquid chromatography-selected ion monitoring mass spectrometry and liquid chromatography-ion trap mass spectrometry. J Anal Toxicol 24(3):170–179

    CAS  PubMed  Google Scholar 

  • Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8(1):33–42. doi:10.1007/s13181-011-0193-z

    PubMed Central  PubMed  Google Scholar 

  • Ramsey J, Dargan PI, Smyllie M et al (2010) Buying ‘legal’ recreational drugs does not mean that you are not breaking the law. QJM 103(10):777–783. doi:10.1093/qjmed/hcq132

    CAS  PubMed  Google Scholar 

  • Reuschel SA, Eades D, Foltz RL (1999) Recent advances in chromatographic and mass spectrometric methods for determination of LSD and its metabolites in physiological specimens. J Chromatogr B Biomed Sci Appl 733(1–2):145–159

    CAS  PubMed  Google Scholar 

  • Riba J, McIlhenny EH, Valle M, Bouso JC, Barker SA (2012) Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca. Drug Test Anal 4(7–8):610–616. doi:10.1002/dta.1344

    CAS  PubMed  Google Scholar 

  • Riba J, McIlhenny EH, Bouso JC, Barker SA (2014) Metabolism and urinary disposition of N,N-dimethyltryptamine after oral and smoked administration: a comparative study. Drug Test Anal. doi:10.1002/dta.1685

    PubMed  Google Scholar 

  • Rivier L, Lindgren J-E (1972) “Ayahuasca”, the South American hallucinogenic drink: an ethnobotanical and chemical investigation. Econ Bot 26(2):101–129. doi:10.1007/BF02860772

    CAS  Google Scholar 

  • Rogawski MA, Aghajanian GK (1981) Serotonin autoreceptors on dorsal raphe neurons: structure-activity relationships of tryptamine analogs. J Neurosci 1(10):1148–1154

    CAS  PubMed  Google Scholar 

  • Rothlin E (1957) Pharmacology of lysergic acid diethylamide and some of its related compounds. J Pharm Pharmacol 9(9):569–587

    CAS  PubMed  Google Scholar 

  • Sabol KE, Lew R, Richards JB, Vosmer GL, Seiden LS (1996) Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. Part I: synaptosomal uptake and tissue concentrations. J Pharmacol Exp Ther 276(2):846–854

    CAS  PubMed  Google Scholar 

  • Sanders B, Lankenau SE, Bloom JJ, Hathazi D (2008) “Research chemicals”: tryptamine and phenethylamine use among high-risk youth. Subst Use Misuse 43(3–4):389–402. doi:10.1080/00952990701202970

    PubMed Central  PubMed  Google Scholar 

  • Scanzello CR, Hatzidimitriou G, Martello AL, Katz JL, Ricaurte GA (1993) Serotonergic recovery after (±)3,4-(methylenedioxy) methamphetamine injury: observations in rats. J Pharmacol Exp Ther 264(3):1484–1491

    CAS  PubMed  Google Scholar 

  • Schmidt MM, Sharma A, Schifano F, Feinmann C (2011) “Legal highs” on the net-Evaluation of UK-based Websites, products and product information. Forensic Sci Int 206(1–3):92–97. doi:10.1016/j.forsciint.2010.06.030

    PubMed  Google Scholar 

  • Schreiber R, Brocco M, Millan MJ (1994) Blockade of the discriminative stimulus effects of by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. Eur J Pharmacol 264(1):99–102

    CAS  PubMed  Google Scholar 

  • Schwartz RH, Smith DE (1988) Hallucinogenic mushrooms. Clin Pediatr 27(2):70–73

    CAS  Google Scholar 

  • Seely KA, Lapoint J, Moran JH, Fattore L (2012) Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry 39(2):234–243. doi:10.1016/j.pnpbp.2012.04.017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheard MH, Astrachan DI, Davis M (1977) The effect of D-lysergic acid diethylamide (LSD) upon shock elicited fighting in rats. Life Sci 20(3):427–430

    CAS  PubMed  Google Scholar 

  • Shen HW, Jiang XL, Winter JC, Yu AM (2010) Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metab 11(8):659–666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu E, Watanabe H, Kojima T et al (2007) Combined intoxication with methylone and 5-MeO-MIPT. Prog Neuropsychopharmacol Biol Psychiatry 31(1):288–291. doi:10.1016/j.pnpbp.2006.06.012

    CAS  PubMed  Google Scholar 

  • Shulgin AT, Shulgin A (1997) TIHKAL: the continuation. Transform, Berkeley

    Google Scholar 

  • Siddik ZH, Barnes RD, Dring LG, Smith RL, Williams RT (1979) The fate of lysergic acid DI[14C]ethylamide ([14C]LSD) in the rat, guinea pig and rhesus monkey and of [14C]iso-LSD in rat. Biochem Pharmacol 28(20):3093–3101

    CAS  PubMed  Google Scholar 

  • Sitaram BR, McLeod WR (1990) Observations on the metabolism of the psychotomimetic indolealkylamines: implications for future clinical studies. Biol Psychiatry 28(10):841–848

    CAS  PubMed  Google Scholar 

  • Sitaram BR, Lockett L, Blackman GL, McLeod WR (1987a) Urinary excretion of 5-methoxy-N,N-dimethyltryptamine, N,N-dimethyltryptamine and their N-oxides in the rat. Biochem Pharmacol 36(13):2235–2237

    CAS  PubMed  Google Scholar 

  • Sitaram BR, Lockett L, Talomsin R, Blackman GL, McLeod WR (1987b) In vivo metabolism of 5-methoxy-N,N-dimethyltryptamine and N,N-dimethyltryptamine in the rat. Biochem Pharmacol 36(9):1509–1512

    CAS  PubMed  Google Scholar 

  • Skelton MR, Schaefer TL, Herring NR, Grace CE, Vorhees CV, Williams MT (2009) Comparison of the developmental effects of 5-methoxy-N,N-diisopropyltryptamine (Foxy) to (±)-3,4-methylenedioxymethamphetamine (ecstasy) in rats. Psychopharmacology 204(2):287–297. doi:10.1007/s00213-009-1459-x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sklerov JH, Magluilo J Jr, Shannon KK, Smith ML (2000) Liquid chromatography-electrospray ionization mass spectrometry for the detection of lysergide and a major metabolite, 2-oxo-3-hydroxy-LSD, in urine and blood. J Anal Toxicol 24(7):543–549

    CAS  PubMed  Google Scholar 

  • Sklerov J, Levine B, Moore KA, King T, Fowler D (2005) A fatal intoxication following the ingestion of 5-methoxy-N,N-dimethyltryptamine in an ayahuasca preparation. J Anal Toxicol 29(8):838–841

    CAS  PubMed  Google Scholar 

  • Smith RL, Canton H, Barrett RJ, Sanders-Bush E (1998) Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors. Pharmacol Biochem Behav 61(3):323–330

    CAS  PubMed  Google Scholar 

  • Smith RL, Barrett RJ, Sanders-Bush E (1999) Mechanism of tolerance development to 2,5-dimethoxy-4-iodoamphetamine in rats: down-regulation of the 5-HT2A, but not 5-HT2C, receptor. Psychopharmacology 144(3):248–254

    CAS  PubMed  Google Scholar 

  • Smith RL, Barrett RJ, Sanders-Bush E (2003) Discriminative stimulus properties of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(±)DOI] in C57BL/6J mice. Psychopharmacology 166(1):61–68. doi:10.1007/s00213-002-1252-6

    CAS  PubMed  Google Scholar 

  • Smith DE, Raswyck GE, Davidson LD (2014) From Hofmann to the Haight Ashbury, and into the future: the past and potential of lysergic acid diethylamide. J Psychoact Drugs 46(1):3–10. doi:10.1080/02791072.2014.873684

    Google Scholar 

  • Smolinske SC, Rastogi R, Schenkel S (2005) Foxy methoxy: a new drug of abuse. J Med Toxicol 1(1):22–25

    PubMed  Google Scholar 

  • Sticht G, Kaferstein H (2000) Detection of psilocin in body fluids. Forensic Sci Int 113(1–3):403–407

    CAS  PubMed  Google Scholar 

  • Strassman RJ (2001) DMT: the spirit molecule: a doctor's revolutionary research into the biology of near-death and mystical experiences. Park Street Press, Rochester

  • Strassman RJ, Qualls CR (1994) Dose-response study of N,N-dimethyltryptamine in humans. I. Neuroendocrine, autonomic, and cardiovascular effects. Arch Gen Psychiatry 51(2):85–97

    CAS  PubMed  Google Scholar 

  • Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994) Dose-response study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Arch Gen Psychiatry 51(2):98–108

    CAS  PubMed  Google Scholar 

  • Strassman RJ, Qualls CR, Berg LM (1996) Differential tolerance to biological and subjective effects of four closely spaced doses of N,N-dimethyltryptamine in humans. Biol Psychiatry 39(9):784–795. doi:10.1016/0006-3223(95)00200-6

    CAS  PubMed  Google Scholar 

  • Szara S (1956) Dimethyltryptamin: its metabolism in man; the relation to its psychotic effect to the serotonin metabolism. Experientia 12(11):441–442

    CAS  PubMed  Google Scholar 

  • Taljemark J, Johansson BA (2012) Drug-induced acute psychosis in an adolescent first-time user of 4-HO-MET. Eur Child Adolesc Psychiatry 21(9):527–528. doi:10.1007/s00787-012-0282-9

    PubMed  Google Scholar 

  • Tanaka E, Kamata T, Katagi M, Tsuchihashi H, Honda K (2006) A fatal poisoning with 5-methoxy-N,N-diisopropyltryptamine, Foxy. Forensic Sci Int 163(1–2):152–154. doi:10.1016/j.forsciint.2005.11.026

    CAS  PubMed  Google Scholar 

  • Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94(2):213–216

    CAS  PubMed  Google Scholar 

  • Tsuchiya H, Yamada K, Tajima K, Hayashi T (1996) Urinary excretion of tetrahydro-beta-carbolines relating to ingestion of alcoholic beverages. Alcohol Alcohol 31(2):197–203

    CAS  PubMed  Google Scholar 

  • Turner DM (1994) The essential psychadelic handbook. Panther Press, San Francisco

    Google Scholar 

  • Twarog BM, Page IH (1953) Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol 175(1):157–161

    CAS  PubMed  Google Scholar 

  • Tyls F, Palenicek T, Horacek J (2014) Psilocybin—summary of knowledge and new perspectives. Eur Neuropsychopharmacol 24(3):342–356. doi:10.1016/j.euroneuro.2013.12.006

    CAS  PubMed  Google Scholar 

  • Ujvary I (2014) Psychoactive natural products: overview of recent developments. Ann Ist Super Sanita 50(1):12–27. doi:10.4415/ANN_14_01_04

    CAS  PubMed  Google Scholar 

  • Valente MJ, de Pinho PG, Bastos ML, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88(1):15–45. doi:10.1007/s00204-013-1163-9

    CAS  PubMed  Google Scholar 

  • Vorce SP, Sklerov JH (2004) A general screening and confirmation approach to the analysis of designer tryptamines and phenethylamines in blood and urine using GC–EI–MS and HPLC-electrospray-MS. J Anal Toxicol 28(6):407–410

    CAS  PubMed  Google Scholar 

  • Wada K, Funada M, Shimane T (2013) Current status of substance abuse and HIV infection in Japan. J Food Drug Anal 21(4):S33–S36. doi:10.1016/j.jfda.2013.09.030

    PubMed Central  PubMed  Google Scholar 

  • Walters JK, Sheard MH, Davis M (1978) Effects of N,N-dimethyltryptamine (DMT) and 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) on shock elicited fighting in rats. Pharmacol Biochem Behav 9(1):87–90

    CAS  PubMed  Google Scholar 

  • Weil AT, Davis W (1994) Bufo alvarius: a potent hallucinogen of animal origin. J Ethnopharmacol 41(1–2):1–8

    CAS  PubMed  Google Scholar 

  • Wieland H, Konz W, Mittasch H (1934) Die konstitution von Bufotenin und Bufotenidin. Über kröten-Giftstoffe. VII. Justus Liebigs Ann Chem 513(1):1–25

    CAS  Google Scholar 

  • Williams MT, Herring NR, Schaefer TL et al (2007) Alterations in body temperature, corticosterone, and behavior following the administration of 5-methoxy-diisopropyltryptamine (‘foxy’) to adult rats: a new drug of abuse. Neuropsychopharmacology 32(6):1404–1420. doi:10.1038/sj.npp.1301232

    CAS  PubMed  Google Scholar 

  • Wilson JM, McGeorge F, Smolinske S, Meatherall R (2005) A foxy intoxication. Forensic Sci Int 148(1):31–36. doi:10.1016/j.forsciint.2004.04.017

    CAS  PubMed  Google Scholar 

  • Winstock AR, Kaar S, Borschmann R (2014) Dimethyltryptamine (DMT): prevalence, user characteristics and abuse liability in a large global sample. J Psychopharmacol 28(1):49–54. doi:10.1177/0269881113513852

    PubMed  Google Scholar 

  • Winter JC, Filipink RA, Timineri D, Helsley SE, Rabin RA (2000) The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors. Pharmacol Biochem Behav 65(1):75–82

    CAS  PubMed  Google Scholar 

  • Winter JC, Eckler JR, Rabin RA (2004) Serotonergic/glutamatergic interactions: the effects of mGlu2/3 receptor ligands in rats trained with LSD and PCP as discriminative stimuli. Psychopharmacology 172(2):233–240. doi:10.1007/s00213-003-1636-2

    CAS  PubMed  Google Scholar 

  • Winter JC, Rice KC, Amorosi DJ, Rabin RA (2007) Psilocybin-induced stimulus control in the rat. Pharmacol Biochem Behav 87(4):472–480. doi:10.1016/j.pbb.2007.06.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolbach AB Jr, Isbell H, Miner EJ (1962) Cross tolerance between mescaline and LSD-25, with a comparison of the mescaline and LSD reactions. Psychopharmacologia 3:1–14

    CAS  PubMed  Google Scholar 

  • Wurst M, Kysilka R, Flieger M (2002) Psychoactive tryptamines from basidiomycetes. Folia Microbiol 47(1):3–27

    CAS  Google Scholar 

Download references

Acknowledgments

This work received financial support from the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundação para a Ciência e Tecnologia) through project Pest-C/EQB/LA0006/2013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana Margarida Araújo or Márcia Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, A.M., Carvalho, F., Bastos, M.L. et al. The hallucinogenic world of tryptamines: an updated review. Arch Toxicol 89, 1151–1173 (2015). https://doi.org/10.1007/s00204-015-1513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1513-x

Keywords

Navigation