Skip to main content

Advertisement

Log in

Brain ischemia with Alzheimer phenotype dysregulates Alzheimer’s disease-related proteins

  • Review Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

There are evidences for the influence of Alzheimer’s proteins on postischemic brain injury. We present here an overview of the published evidence underpinning the relationships between β-amyloid peptide, hyperphosphorylated tau protein, presenilins, apolipoproteins, secretases and neuronal survival/death decisions after ischemia and development of postischemic dementia. The interactions of above molecules and their influence and contribution to final ischemic brain degeneration resulting in dementia of Alzheimer phenotype are reviewed. Generation and deposition of β-amyloid peptide and tau protein pathology are essential factors involved in Alzheimer’s disease development as well as in postischemic brain dementia. Postischemic injuries demonstrate that ischemia may stimulate pathological amyloid precursor protein processing by upregulation of β- and γ-secretases and therefore are capable of establishing a vicious cycle. Functional postischemic brain recovery is always delayed and incomplete by an injury-related increase in the amount of the neurotoxic C-terminal of amyloid precursor protein and β-amyloid peptide. Finally, we present here the concept that Alzheimer’s proteins can contribute to and/or precipitate postischemic brain neurodegeneration including dementia with Alzheimer’s phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang SH, Simpkins JW. Ischemia-reperfusion promotes tau and beta-amyloid pathology and a progressive cognictive impairment. In: Pluta R, editor. Ischemia-reperfusion pathways in Alzheimer’s disease. New York: Nova Science Publishers Inc; 2007. p. 113–38.

    Google Scholar 

  2. Pinkston JB, Alekseeva N, Gonzalez Toledo E. Stroke and dementia. Neurol Res 2009;31:824–31.

    Article  PubMed  Google Scholar 

  3. Arshavsky YI. Why Alzheimer’s disease starts with a memory impairment: neurophysiological insight. J Alzheimer’s Dis 2010;20:5–16.

    Article  Google Scholar 

  4. de la Tremblaye PB, Plamondon H. Impaired conditioned emotional response and object recognition are concomitant to neuronal damage in the amygdala and perirhinal cortex in middle-aged ischemic rats. Behav Brain Res 2011;219:227–33.

    Article  PubMed  Google Scholar 

  5. Kiryk A, Pluta R, Figiel I, Mikosz M, Ułamek M, Niewiadomska G, et al. Transient brain ischemia due to cardiac arrest causes irreversible long-lasting cognitive injury. Behav Brain Res 2011;219:1–7.

    Article  PubMed  Google Scholar 

  6. Li J, Wang YJ, Zhang M, Fang CQ, Zhou HD. Cerebral ischemia aggravates cognitive impairment in a rat model of Alzheimer’s disease. Life Sci 2011;89:86–92.

    Article  CAS  PubMed  Google Scholar 

  7. Jendroska K, Poewe W, Daniel SE, Pluess J, Iwerssen-Schmidt H, Paulsen J, et al. Ischemic stress induces deposition of amyloid beta immunoreactivity in human brain. Acta Neuropathol 1995;90:461–6.

    Article  CAS  PubMed  Google Scholar 

  8. Wiśniewski HM, Maślińska D. Beta-protein immunoreactivity in the human brain after cardiac arrest. Folia Neuropathol 1996;34:65–71.

    PubMed  Google Scholar 

  9. Jendroska K, Hoffmann OM, Patt S. Amyloid α peptide and precursor protein (APP) in mild and severe brain ischemia. Ann NY Acad Sci 1997;826:401–5.

    Article  CAS  PubMed  Google Scholar 

  10. Wen Y, Yang SH, Liu R, Perez EJ, Brun-Ziukemagel AM, Koulen P, et al. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochim Biophys Acta 2007;1772:473–83.

    Article  CAS  PubMed  Google Scholar 

  11. Qi J, Wu H, Yang Y, Wand D, Chen Y, Gu Y, et al. Cerebral ischemia and Alzheimer’s disease: the expression of amyloid-β and apolipoprotein E in human hippocampus. J Alzheimer’s Dis 2007;12:335–41.

    Article  CAS  Google Scholar 

  12. Pluta R, Ułamek M, Jabłoński M. Alzheimer’s mechanisms in ischemic brain degeneration. Anat Rec 2009;292:1863–81.

    Article  CAS  Google Scholar 

  13. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010;362:329–44.

    Article  CAS  PubMed  Google Scholar 

  14. Maślińska D, Laure-Kamionowska M, Taraszewska A, Deręgowski K, Maśliński S. Immunodistribution of amyloid beta protein (Aβ) and advanced glycation end-product receptors (RAGE) in choroid plexus and ependyma of resuscitated patients. Folia Neuropathol 2011;49:295–300.

    PubMed  Google Scholar 

  15. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002;298:789–91.

    Article  CAS  PubMed  Google Scholar 

  16. Jack Jr. CR, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 2009;132:1355–65.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pluta R, Furmaga-Jabłońska W, Maciejewski R, Ułamek-Kozioł M, Jabłoński M. Brain ischemia activates β- and γ-secretase cleavage of amyloid precursor protein: significance in sporadic Alzheimer’s disease. Mol Neurobiol 2013;47: 425–34.

    Article  CAS  PubMed  Google Scholar 

  18. Pluta R, Kocki J, Maciejewski R, Ułamek-Kozioł M, Jabłoński M, Bogucka-Kocka A, et al. Ischemia signaling to Alzheimer-related genes. Folia Neuropathol 2013;50:322–9.

    Google Scholar 

  19. Pluta R, Jabłoński M, Ułamek-Kozioł M, Kocki J, Brzozowska J, Januszewski S, et al. Sporadic Alzheimer’s disease begins as episodes of brain ischemia and ischemically dysregulated Alzheimer’s disease genes. Mol Neurobiol 2013;48:500–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pluta R. In: Pluta R, editor. Ischemia-reperfusion pathways in Alzheimer’s disease. New York, USA: Nova Science Publishers, Inc; 2007.

  21. Pluta R, Jabłoński M. Alzheimer’s factors in ischemic brain injury. In: Agrawal A, editor. Brain injury, pathogenesis, monitoring, recovery and management. Croatia: InTech, Open Book; 2012. p. 97–138.

    Google Scholar 

  22. Pluta R, Jabłoński M, Czuczwar SJ. Postischemic dementia with Alzheimer phenotype: selectively vulnerable versus resistant areas of the brain and neurodegeneration versus β-amyloid peptide. Folia Neuropathol 2012;50: 101–9.

    CAS  PubMed  Google Scholar 

  23. Pluta R, Ułamek-Kozioł M, Januszewski S, Ściślewska M, Bogucka-Kocka A, Kocki J. Alzheimer’s factors in postischemic dementia. Rom J Morphol Embryol 2012;53:3–6.

    Google Scholar 

  24. van Rooden S, Goos JD, van Opstal AM, Versluis MJ, Webb AG, Blauw GJ, et al. Increased number of microinfarcts in Alzheimer disease at 7-T MR imaging. Radiology 2014;270:205–11.

    Article  PubMed  Google Scholar 

  25. Love S, Miners JS. White matter hypoperfusion and damage in dementia: post mortem assessment. Brain Pathol 2015;25:99–107.

    Article  PubMed  Google Scholar 

  26. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The nun study. JAMA 1997;277:813–7.

    CAS  PubMed  Google Scholar 

  27. Sheng B, Cheng LF, Law CB, Li HL, Yeung KM, Lau KK. Coexisting cerebral infarction in Alzheimer’s disease is associated with fast dementia progression: applying the National Institute for Neurological Disorders and Stroke/Association Internationale pour la Recherche et l’Enseignement en Neurosciences Neuroimaging Criteria in Alzheimer’s Disease with Concomitant Cerebral Infarction. J Am Geriatr Soc 2007;55:918–22.

    Article  PubMed  Google Scholar 

  28. Villarreal AE, Barron R, Rao KS, Britton GB. The effects of impaired cerebral circulation on Alzheimer’s disease pathology: evidence from animal studies. J Alzheimer’s Dis 2014;42:707–22.

    Article  Google Scholar 

  29. Schneider JA, Wilson RS, Cochran EJ, Bienias JL, Arnold SE, Evans DA, et al. Relation of cerebral infarctions to dementia and cognitive function in older persons. Neurology 2003;60:1082–8.

    Article  CAS  PubMed  Google Scholar 

  30. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MMB. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003;348:1215–22.

    Article  PubMed  Google Scholar 

  31. Altieri M, Di PV, Pasquini M, Gasparini M, Vanacore N, Vicenzini E, et al. Delayed poststroke dementia: a 4-year follow-up study. Neurology 2004;62:2193–7.

    Article  CAS  PubMed  Google Scholar 

  32. Leys D, Henon H, Mackowiak-Cordoliani MA, Pasquier F. Poststroke dementia. Lancet Neurol 2005;4:752–9.

    Article  PubMed  Google Scholar 

  33. Atkinson L, Boyle JP, Pearson HA, Peers C. Chronic hypoxia inhibits NA+/Ca2+ exchanges expression in cortical astrocytes. NeuroReport 2006;17:649–52.

    Article  CAS  PubMed  Google Scholar 

  34. Kocki J, Ułamek-Kozioł M, Bogucka-Kocka A, Januszewski S, Jabłoński M, Gil-Kulik P, et al. Dysregulation of amyloid-β protein precursor, β-secretase, presenilin 1 and 2 genes in the rat selectively vulnerable CA1 subfield of hippocampus following transient global brain ischemia. J Alzheimer’s Dis 2015;47:1047–56.

    Article  CAS  Google Scholar 

  35. Pluta R, Kocki J, Ułamek-Kozioł M, Bogucka-Kocka A, Gil-Kulik P, Januszewski S, et al. Alzheimer-associated presenilin 2 gene is dysregulated in rat medial temporal lobe cortex after complete brain ischemia due to cardiac arrest. Pharmacol Rep 2016;68:155–61.

    Article  CAS  PubMed  Google Scholar 

  36. Pluta R, Kida E, Lossinsky AS, Golabek AA, Mossakowski MJ, Wisniewski HM. Complete cerebral ischemia with short-term survival in rats induced by cardiac arrest. I. Extracellular accumulation of Alzheimer’s β-amyloid protein precursor in the brain. Brain Res 1994;649:323–8.

    Article  CAS  PubMed  Google Scholar 

  37. Pluta R. Pathological opening of the blood-brain barrier to horseradish peroxidase and amyloid precursor protein following ischemia-reperfusion brain injury. Chemotherapy 2005;51:223–6.

    Article  CAS  PubMed  Google Scholar 

  38. Popa-Wagner A. Alzheimer’s disease pathological factors in ischemic aged brain. In: Pluta R, editor. Ischemia-reperfusion pathways in Alzheimer’s disease. New York, USA: Nova Science Publishers, Inc; 2007. p. 51–84.

    Google Scholar 

  39. Hiltunen M, Van Groen T, Jolkkonen J. Functional roles of amyloid-β protein precursor and amyloid-β peptides: evidence from experimental studies. J Alzheimer’s Dis 2009;18:401–12.

    Article  CAS  Google Scholar 

  40. Nalivaeva NN, Fisk L, Kochkina EG, Plesneva SA, Zhuravin IA, Babusikova E, et al. Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid-degrading enzymes. Ann NY Acad Sci 2004;1035: 21–33.

    Article  CAS  Google Scholar 

  41. Yan FL, Zhang J, Guan XN, Hong Z. mRNA expression and activity of ADAM17 in hippocampus after chronic cerebral hypoperfusion: experiment with aged rats. Zhonghua Yi Xue Za Zhi 2007;87:2515–7.

    CAS  PubMed  Google Scholar 

  42. Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, et al. Hypoxia-inducible factor 1α (HIF-1α)-mediated hypoxia increases BACE1 expression and β-amyloid generation. J Biol Chem 2007;282:10873–80.

    Article  CAS  PubMed  Google Scholar 

  43. Blasko I, Beer R, Bigl M, Apelt J, Franz G, Rudzki D, et al. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer’s disease β-secretase (BACE-1). J Neural Transm 2004;111:523–6.

    Article  CAS  PubMed  Google Scholar 

  44. Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol 2004;165:357–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wen Y, Onyewuchi O, Yang S, Liu R, Simpkins JW. Increased beta-secretase activity and expression in rats following transient cerebral ischemia. Brain Res 2004;1009:1–8.

    Article  CAS  PubMed  Google Scholar 

  46. Chuang CM, Hsieh CL, Lin HY, Lin JG. Panax Notoginseng Burk attenuates impairment of learning and memory functions and increases ED1, BDNF and beta-secretase immunoreactive cells in chronic stage ischemia-reperfusion injured rats. Am J Chin Med 2008;36:685–93.

    Article  CAS  PubMed  Google Scholar 

  47. Ye J, Pi R, Mao X, Chen X, Qin J, Xu S, et al. Alterations in mRNA expression of BACE1, cathepsin B, and glutaminyl cyclase in mice ischemic brain. NeuroReport 2009;20:1456–60.

    Article  CAS  PubMed  Google Scholar 

  48. Hebert SS, Bourdages V, Godin C, Ferland M, Carreau M, Levesque G. Presenilin-1 interacts directly with the beta-site amyloid protein precursor-cleaving enzyme (BACE1). Neurobiol Dis 2003;13:238–45.

    Article  CAS  PubMed  Google Scholar 

  49. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 1999;398:513–7.

    Article  CAS  PubMed  Google Scholar 

  50. Ułamek-Kozioł M, Furmaga-Jabłońska W, Januszewski S, Brzozowska J, Ściślewska M, Jabłoński M, et al. Neuronalautophagy: self-eating or self-cannibalism in Alzheimer’s disease. Neurochem Res 2013;38:1769–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang T, Wang H, Li Q, Huang J, Sun X. Modulating autophagy affects neuroamyloidogenesis in an in vitro ischemic stroke model. Neuroscience 2014;263:130–7.

    Article  CAS  PubMed  Google Scholar 

  52. Tanimukai H, Imaizumi K, Kudo T, Katayama T, Tsuda M, Takagi T, et al. Alzheimer-associated presenilin-1 gene is induced in gerbil hippocampus after transient ischemia. Mol Brain Res 1998;54:212–8.

    Article  CAS  PubMed  Google Scholar 

  53. Pennypacker KR, Hernandez H, Benkovic S, Morgan DG, Willing AE, Sanberg PR. Induction of presenilins in the rat brain after middle cerebral arterial occlusion. Brain Res Bull 1999;48:539–43.

    Article  CAS  PubMed  Google Scholar 

  54. Polavarapu R, An J, Zhang C, Yepes M. Regulated intramembrane proteolysis of the low-density lipoprotein receptor-related protein mediates ischemic cell death. Am J Pathol 2008;172:1355–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi J, Yang SH, Stubley L, Day AL, Simpkins JW. Hypoperfusion induces overexpression of β-amyloid precursor protein mRNA in a focal ischemic rodent model. Brain Res 2000;853:1–4.

    Article  CAS  PubMed  Google Scholar 

  56. Kim HS, Lee SH, Kim SS, Kim YK, Jeong SJ, Ma J, et al. Post-ischemic changes in the expression of Alzheimer’s APP isoforms in rat cerebral cortex. NeuroReport 1998;9:533–7.

    CAS  PubMed  Google Scholar 

  57. Koistinaho J, Pyykonen I, Keinanen R, Hokfelt T. Expression of β-amyloid precursor protein mRNAs following transient focal ischaemia. NeuroReport 1996;7:2727–31.

    Article  CAS  PubMed  Google Scholar 

  58. Abe K, Tanzi RE, Kogure K. Selective induction of Kunitz-type protease inhibitor domain-containing amyloid precursor protein mRNA after persistent focal ischemia in rat cerebral cortex. Neurosci Lett 1991;125: 172–4.

    Article  CAS  PubMed  Google Scholar 

  59. Shi J, Panickar KS, Yang SH, Rabbani O, Day AL, Simpkins JW. Estrogen attenuates over-expression of beta-amyloid precursor protein messenger RNA in an animal model of focal ischemia. Brain Res 1998;810: 87–92.

    Article  CAS  PubMed  Google Scholar 

  60. Hall ED, Oostveen JA, Dunn E, Carter DB. Increased amyloid protein precursor and apolipoprotein E immunoreactivity in the selectively vulnerable hippocampus following transient forebrain ischemia in gerbils. Exp Neurol 1995;135:17–27.

    Article  CAS  PubMed  Google Scholar 

  61. Horsburgh K, Nicoll JAR. Selective cellular alterations in amyloid precursor protein and apolipoprotein E following transient cerebral ischaemia in the rat. Alzheimer’s Res 1996;2:37–42.

    CAS  Google Scholar 

  62. Tomimoto H, Akiguchi I, Wakita H, Nakamura S, Kimura J. Ultrastructural localization of amyloid protein precursor in the normal and postischemic gerbil brain. Brain Res 1995;672:187–95.

    Article  CAS  PubMed  Google Scholar 

  63. Yokota M, Saido TC, Tani E, Yamaura I, Minami N. Cytotoxic fragment of amyloid precursor protein accumulates in hippocampus after global fore-brain ischemia. J Cereb Blood Flow Metab 1996;16:1219–23.

    Article  CAS  PubMed  Google Scholar 

  64. Pluta R. Experimental model of neuropathological changes characteristic for Alzheimer’s disease. Folia Neuropathol 1997;35:94–8.

    CAS  PubMed  Google Scholar 

  65. Pluta R, Barcikowska M, Mossakowski MJ, Zelman I. Cerebral accumulation of beta-amyloid following ischemic brain injury with long-term survival. Acta Neurochir 1998;71(Suppl.):206–8.

    CAS  Google Scholar 

  66. Lin B, Schmidt-Kastner R, Busto R, Ginsberg MD. Progressive parenchymal deposition of β-amyloid precursor protein in rat brain following global cerebral ischemia. Acta Neuropathol 1999;97:359–68.

    Article  CAS  PubMed  Google Scholar 

  67. Pluta R. The role of apolipoprotein E in the deposition of β-amyloid peptide during ischemia-reperfusion brain injury. A model of early Alzheimer’s disease. Ann NY Acad Sci 2000;903:324–34.

    Article  CAS  PubMed  Google Scholar 

  68. Lin B, Ginsberg MD, Busto R. Hyperglycemic but not normoglycemic global ischemia induces marked early intraneuronal expression of β-amyloid precursor protein. Brain Res 2001;888:107–16.

    Article  CAS  PubMed  Google Scholar 

  69. Sinigaglia-Coimbra R, Cavalheiro EA, Coimbra CG. Postischemic hypertermia induces Alzheimer-like pathology in the rat brain. Acta Neuropathol 2002;103:444–52.

    Article  CAS  PubMed  Google Scholar 

  70. Pluta R. Alzheimer lesions after ischemia-reperfusion brain injury. Folia Neuropathol 2004;42:181–6.

    PubMed  Google Scholar 

  71. Pluta R. Ischemia-reperfusion factors in sporadic Alzheimer’s disease. In: Welsh EM, editor. New research on Alzheimer’s disease. New York: Nova Science Publishers, Inc; 2006. p. 183–234.

    Google Scholar 

  72. Pluta R. Is the ischemic blood-brain barrier insufficiency responsible for fullblown Alzheimer’s disease. Neurol Res 2006;28:266–71.

    Google Scholar 

  73. Pluta R, Ułamek M. Brain amyloidosis following ischemia-reperfusion injury. Curr Trends Neurol 2006;2:41–6.

    CAS  Google Scholar 

  74. Pluta R, Ułamek M, Januszewski S. Micro-blood-brain barrier openings and cytotoxic fragments of amyloid precursor protein accumulation in white matter after ischemic brain injury in long-lived rats. Acta Neurochir 2006;96(Suppl.):267–71.

    Article  CAS  Google Scholar 

  75. Pluta R. Role of ischemic blood-brain barrier on amyloid plaques development in Alzheimer’s disease brain. Curr Neurovasc Res 2007;4:121–9.

    Article  CAS  PubMed  Google Scholar 

  76. Jabłoński M, Maciejewski R, Januszewski S, Ułamek M, Pluta R. One year follow up in ischemic brain injury and the role of Alzheimer factors. Physiol Res 2011;60(Suppl. 1):S113–9.

    PubMed  Google Scholar 

  77. Ishimaru H, Ishikawa K, Haga S, Shoji M, Ohe Y, Haga C, et al. Accumulation of apolipoprotein E and β-amyloid-like protein in a trace of the hippocampal CA1 pyramidal cell layer after ischaemic delayed neuronal death. NeuroReport 1996;7:3063–7.

    Article  CAS  PubMed  Google Scholar 

  78. Fujioka M, Taoka T, Matsuo Y, Mishima K, Ogoshi K, Kondo Y, et al. Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration. Ann Neurol 2003;54:732–47.

    Article  PubMed  Google Scholar 

  79. Pluta R, Ułamek M. Brain ischemia and ischemic blood-brain barrier as etiological factors in sporadic Alzheimer’s disease. Neuropsychiatr Dis Treat 2008;4:855–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pluta R, Januszewski S, Jabłoński M, Ułamek M. Factors in creepy delayed neuronal death in hippocampus following brain ischemia-reperfusion injury with long-term survival. Acta Neurochir 2010;106(Suppl.):37–41.

    Article  Google Scholar 

  81. Pluta R, Ułamek M, Jabłoński M. Consideration of the ischaemic basis and treatment of Alzheimer’s disease. Folia Neuropathol 2010;48:11–26.

    CAS  PubMed  Google Scholar 

  82. Banati RB, Gehrmann J, Wießner C, Hossmann KA, Kreutzberg GW. Glial expression of the β-amyloid precursor protein (APP) in global ischemia. J Cereb Blood Flow Metab 1995;15:647–54.

    Article  CAS  PubMed  Google Scholar 

  83. Palacios G, Mengod G, Tortosa A, Ferrer I, Palacios JM. Increased β-amyloid precursor protein expression in astrocytes in the gerbil hippocampus following ischaemia: association with proliferation of astrocytes. Eur J Neurosci 1995;7:501–10.

    Article  CAS  PubMed  Google Scholar 

  84. Nihashi T, Inao S, Kajita Y, Kawai T, Sugimoto T, Niwa M, et al. Expression and distribution of beta amyloid precursor protein and beta amyloid peptide in reactive astrocytes after transient middle cerebral artery occlusion. Acta Neurochir 2001;143:287–95.

    Article  CAS  PubMed  Google Scholar 

  85. Pluta R. Glial expression of the β-amyloid peptide in cardiac arrest. J Neurol Sci 2002;20:203–4. 277–80.

    Google Scholar 

  86. Pluta R. Astroglial expression of the beta-amyloid in ischemia-reperfusion brain injury. Ann NY Acad Sci 2002;977:102–8.

    Article  CAS  PubMed  Google Scholar 

  87. Badan I, Platt D, Kessler C, Popa-Wagner A. Temporal dynamics of degenerative and regenerative events associated with cerebral ischemia in aged rats. Gerontology 2003;49:356–65.

    Article  CAS  PubMed  Google Scholar 

  88. Badan I, Dinca I, Buchhold B, Suofu Y, Walker L, Gratz M, et al. Accelerated accumulation of N- and C-terminal beta APP fragments and delayed recovery of microtubule-associated protein 1B expression following stroke in aged rats. Eur J Neurosci 2004;19:2270–80.

    Article  CAS  PubMed  Google Scholar 

  89. Pluta R. From brain ischemia-reperfusion injury to possible sporadic Alzheimer’s disease. Curr Neurovasc Res 2004;1:441–53.

    Article  PubMed  Google Scholar 

  90. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 2003;9:453–7.

    Article  CAS  PubMed  Google Scholar 

  91. Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004;72:111–27.

    Article  CAS  PubMed  Google Scholar 

  92. Yam PS, Takasago T, Dewar D, Graham DI, McCulloch J. Amyloid precursor protein accumulates in white matter at the margin of a focal ischaemic lesion. Brain Res 1997;760:150–7.

    Article  CAS  PubMed  Google Scholar 

  93. Dietrich WD, Kraydieh S, Prado R, Stagliano NE. White matter alterations following thromboembolic stroke: a β-amyloid precursor protein immunocytochemical study in rats. Acta Neuropathol 1998;95:524–31.

    Article  CAS  PubMed  Google Scholar 

  94. Pluta R. Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival. Acta Neurochir (Suppl) 2003;86: 117–22.

    CAS  Google Scholar 

  95. Pluta R, Januszewski S, Ułamek M. Ischemic blood-brain barrier and amyloid in white matter as etiological factors in leukoaraiosis. Acta Neurochir 2008;102(Suppl.):353–6.

    Article  Google Scholar 

  96. Pluta R. No effect of anti-oxidative therapy on cerebral amyloidosis following ischemia-reperfusion brain injury. Folia Neuropathol 2000;38:188–90.

    CAS  PubMed  Google Scholar 

  97. Zhang J, Zhang Y, Li J, Xing S, Li C, Li Y, et al. Autophagosomes accumulation is associated with β-amyloid deposits and secondary damage in the thalamus after focal cortical infarction in hypertensive rats. J Neurochem 2012;120: 564–73.

    Article  CAS  PubMed  Google Scholar 

  98. Xing S, Zhang J, Dang C, Liu G, Zhang Y, Li J, et al. Cerebrolysin reduces amyloid-β deposits, apoptosis and autophagy in the thalamus and improves functional recovery after cortical infarction. J Neurol Sci 2014;337: 104–11.

    Article  CAS  PubMed  Google Scholar 

  99. Pluta R, Barcikowska M, Januszewski S, Misicka A, Lipkowski AW. Evidence of blood-brain barrier permeability/leakage for circulating human Alzheimer’s β-amyloid-(1-42)-peptide. NeuroReport 1996;7:1261–5.

    Article  CAS  PubMed  Google Scholar 

  100. Estus S, Golde TE, Kunishita T, Blades D, Lowery D, Eisen M, et al. Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid protein precursor. Science 1992;255:726–8.

    Article  CAS  PubMed  Google Scholar 

  101. Oster-Granite ML, McPhie DL, Greenan J, Neve RL. Age-dependent neuronal and synaptic degeneration in mice transgenic for the C terminus of the amyloid precursor protein. J Neurosci 1996;16:6732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pluta R, Barcikowska M, Dębicki G, Ryba M, Januszewski S. Changes in amyloid precursor protein and apolipoprotein E immunoreactivity following ischemic brain injury in rat with long-term survival: influence of idebenone treatment. Neurosci Lett 1997;232:95–8.

    Article  CAS  PubMed  Google Scholar 

  103. Cotter RL, Burke WJ, Thomas VS, Potter JF, Zheng J, Gendelman HE. Insights into the neurodegenerative process of Alzheimer’s disease: a role for mononuclear phagocyte-associated inflammation and neurotoxicity. J Leukoc Biol 1999;65:416–27.

    Article  CAS  PubMed  Google Scholar 

  104. Mattson MP, Zhu HY, Yu J, Kindy MS. Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J Neurosci 2000;20:1358–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. LaFerla FM, Troncoso JC, Strickland DK, Kawas CH, Jay G. Neuronal cell death in Alzheimer’s disease correlates with apoE uptake and intracellular Aβ stabilization. J Clin Invest 1997;100:310–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang Y, Kinney GA, Spain WJ, Breitner JCS, Cook DG. Presenilin-1 and intracellular calcium stores regulate neuronal glutamate uptake. J Neurochem 2004;88:1361–72.

    Article  CAS  PubMed  Google Scholar 

  107. Ali SM, Dunn E, Oostveen JA, Hall ED, Carter DB. Induction of apolipoprotein E mRNA in the hippocampus of the gerbil after transient global ischemia. Mol Brain Res 1996;38:37–44.

    Article  CAS  PubMed  Google Scholar 

  108. Kamada H, Sato K, Zhang WR, Omori N, Nagano I, Shoji M, et al. Spatiotemporal changes of apolipoprotein E immunoreactivity and apolipoprotein E mRNA expression after transient middle cerebral artery occlusion in rat brain. J Neurosci Res 2003;73:545–56.

    Article  CAS  PubMed  Google Scholar 

  109. Nishio M, Kohmura E, Yuguchi T, Nakajima Y, Fujinaka T, Akiyama C, et al. Neuronal apolipoprotein E is not synthesized in neuron after focal ischemia in rat brain. Neurol Res 2003;25:390–4.

    Article  PubMed  Google Scholar 

  110. Harris FM, Tesseur I, Brecht WJ, Xu O, Mullendorff K, Chang S, et al. Astroglial regulation of apolipoprotein E expression in neuronal cells. Implications for Alzheimer’s disease. J Biol Chem 2004;279:3862–8.

    CAS  PubMed  Google Scholar 

  111. Wiggins AK, Shen PJ, Gundlach AL. Delayed, but prolonged increases in astrocytic clusterin (ApoJ) mRNA expression following acute cortical spreading depression in the rat: evidence for a role of clusterin in ischemic tolerance. Mol Brain Res 2003;114:20–30.

    Article  CAS  PubMed  Google Scholar 

  112. Van Beek J, Chan P, Bernaudin M, Petit E, MacKenzie ET, Fontaine M. Glial responses, clusterin, and complement in permanent focal cerebral ischemia in the mouse. Glia 2000;31:39–50.

    Article  PubMed  Google Scholar 

  113. Walton M, Young D, Sirimanne E, Dodd J, Christie D, Williams C, et al. Induction of clusterin in the immature brain following a hypoxic-ischemic injury. Mol Brain Res 1996;39:137–52.

    Article  CAS  PubMed  Google Scholar 

  114. Kida E, Pluta R, Lossinsky AS, Golabek AA, Choi-Miura NH, Wisniewski HM, et al. Complete cerebral ischemia with short-term survival in rat induced by cardiac arrest. II. Extracellular and intracellular accumulation of apolipoproteins E and J in the brain. Brain Res 1995;674:341–6.

    Article  CAS  PubMed  Google Scholar 

  115. Horsburgh K, Nicoll JAR. Selective alterations in the cellular distribution of apolipoprotein E immunoreactivity following transient cerebral ischemia in the rat. Neuropathol Appl Neurobiol 1996;22:342–9.

    Article  CAS  PubMed  Google Scholar 

  116. Ishimaru H, Ishikawa K, Ohe Y, Takahashi A, Maruyama Y, Cystatin C, et al. E immunoreactivities in CA1 neurons in ischemic gerbil hippocampus. Brain Res 1996;709:155–62.

    Article  CAS  PubMed  Google Scholar 

  117. Wisniewski T, Frangione B. Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 1992;135:235–8.

    Article  CAS  PubMed  Google Scholar 

  118. Huang Y, Liu XQ, Wyss-Coray T, Brecht WJ, Sanan DA, Mahley RW. Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci USA 2001;98:8838–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ji ZS, Miranda RD, Newhouse YM, Weisgraber KH, Huang Y, Mahley RW. Apolipoprotein E4 potentates amyloid β peptide-induced lysosomal leakage and apoptosis in neuronal cells. J Biol Chem 2002;277:21821–28.

    Article  CAS  PubMed  Google Scholar 

  120. Moulder KL, Narita M, Chang LK, Bu G, Johanson Jr. EM. Analysis of a novel mechanism of neuronal toxicity produced by an apolipoprotein E-derived peptide. J Neurochem 1999;72:1069–80.

    Article  CAS  PubMed  Google Scholar 

  121. Kitagawa K, Matsumoto M, Kuwabara K, Ohtsuki T, Hori M. Delayed, but marked, expression of apolipoprotein E is involved in tissue clearance after cerebral infarction. J Cereb Blood Flow Metab 2001;21: 1199–207.

    Article  CAS  PubMed  Google Scholar 

  122. Zheng GQ, Wang XM, Wang Y, Wang XT. Tau as a potential novel therapeutic target in ischemic stroke. J Cell Biochem 2010;109:26–9.

    CAS  PubMed  Google Scholar 

  123. Song B, Ao Q, Wang Z, Liu W, Niu Y, Shen Q, et al. Phosphorylation of tau protein over time in rats subjected to transient brain ischemia. Neural Regen Res 2013;8:3173–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Uchihara T, Tsuchiya K, Kondo H, Hayama T, Ikeda K. Widespread appearance of Alz-50 immunoreactive neurons in the human brain with cerebral infarction. Stroke 1995;26:2145–8.

    Article  CAS  PubMed  Google Scholar 

  125. Irving EA, Nicoll J, Graham DI, Dewar D. Increased tau immunoreactivity in oligodendrocytes following human stroke and head injury. Neurosci Lett 1996;213:189–92.

    Article  CAS  PubMed  Google Scholar 

  126. Uchihara T, Tsuchiya K, Nakamura A, Ikeda K. Appearance of tau-2 immunoreactivity in glial cells in human brain with cerebral infarction. Neurosci Lett 2000;286:99–102.

    Article  CAS  PubMed  Google Scholar 

  127. Geddes JW, Schwab C, Craddock S, Wilson JL, Pettigrew LC. Alterations in tau immunostaining in the rat hippocampus following transient cerebral ischemia. J Cereb Blood Flow Metab 1994;14:554–64.

    Article  CAS  PubMed  Google Scholar 

  128. Irving EA, Yatsushiro K, McCulloch J, Dewar D. Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radicals. J Cereb Blood Flow Metab 1997;17:612–22.

    Article  CAS  PubMed  Google Scholar 

  129. Dewar D, Dawson D. Tau protein is altered by focal cerebral ischaemia in the rat: an immunohistochemical and immunoblotting study. Brain Res 1995;684: 70–8.

    Article  CAS  PubMed  Google Scholar 

  130. Dong DW, Zhang YS, Yang WY, Wang-Qin RQ, Xu AD, Ruan YW. Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats. Brain Res 2014;1543:280–9.

    Article  CAS  PubMed  Google Scholar 

  131. Wen Y, Yang S, Liu R, Simpkins JW. Transient cerebral ischemia induces site-specific hyperphosphorylation of tau protein. Brain Res 2004;1022: 30–8.

    Article  CAS  PubMed  Google Scholar 

  132. Wen Y, Yang S, Liu R, Brun-Zinkernagel AM, Koulen P, Simpkins JW. Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzheimer’s disease-like tauopathy in female rats. J Biol Chem 2004;279:22684–92.

    Article  CAS  PubMed  Google Scholar 

  133. Morioka M, Kawano T, Yano S, Kai Y, Tsuiki H, Yoshinaga Y, et al. Hyperphosphorylation at serine 199/202 of tau factor in the gerbil hippocampus after transient forebrain ischemia. Biochem Biophys Res Commun 2006;347: 273–8.

    Article  CAS  PubMed  Google Scholar 

  134. Gordon-Krajcer W, Koźniewska E, Łazarewicz JW, Księżak-Reding H. Differential changes in phosphorylation of tau at PHF-1 and 12E8 epitopes during brain ischemia and reperfusion in gerbils. Neurochem Res 2007;32: 729–37.

    Article  CAS  PubMed  Google Scholar 

  135. Uchihara T, Nakamura A, Arai T, Ikeda K, Tsuchiya K. Microglial tau undergoes phosphorylation-independent modification after ischemia. Glia 2004;45: 180–7.

    Article  PubMed  Google Scholar 

  136. Dewar D, Graham DI, Teasdale GM, McCulloch J. Alz-50 and ubiquitin immunoreactivity is induced by permanent focal cerebral ischaemia in the cat. Acta Neuropathol 1993;86:623–9.

    Article  CAS  PubMed  Google Scholar 

  137. Dewar D, Graham DI, Teasdale GM, McCulloch J. Cerebral ischemia induces alterations in tau and ubiquitin proteins. Dementia 1994;5:168–73.

    CAS  PubMed  Google Scholar 

  138. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 2002;156:1051–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shackelford DA, Yeh RY. Dephosphorylation of tau during transient forebrain ischemia in the rat. Mol Chem Neuropathol 1998;34:1003–12.

    Article  Google Scholar 

  140. Burkhart KK, Beard DC, Lehman RA, Billingsley ML. Alterations in tau phosphorylation in rat and human neocortical brain slices following hypoxia and glucose deprivation. Exp Neurol 1998;154:464–72.

    Article  CAS  PubMed  Google Scholar 

  141. Shackelford DA, Nelson KE. Changes in phosphorylation of tau during ischemia and reperfusion in the rabbit spinal cord. J Neurochem 1996;66: 286–95.

    Article  CAS  PubMed  Google Scholar 

  142. Mailliot C, Podevin-Dimster V, Rosenthal RE, Sergeant N, Delacourte A, Fiskum G, et al. Rapid tau protein dephosphorylation and differential rephosphorylation during cardiac arrest-induced cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 2000;20:543–9.

    Article  CAS  PubMed  Google Scholar 

  143. Mörtberg E, Zetterberg H, Nordmark J, Blennow K, Catry C, Decraemer H, et al. Plasma tau protein in comatose patients after cardiac arrest treated with therapeutic hypothermia. Acta Anaesthesiol Scand 2011;55:1132–8.

    Article  PubMed  CAS  Google Scholar 

  144. Sekeljic V, Bataveljic D, Stamenkovic S, Ułamek M, Jabłoński M, Radenovic L, et al. Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. Brain Struct Funct 2012;217:411–20.

    Article  CAS  PubMed  Google Scholar 

  145. Bennett SA, Pappas BA, Stevens WD, Davidsion CM, Fortin T, Chen J. Cleavage of amyloid precursor protein elicited by chronic cerebral hypoperfusion. Neurobiol Aging 2000;21:207–14.

    Article  CAS  PubMed  Google Scholar 

  146. Baiden-Amissah K, Joashi U, Blumberg R, Mehmet H, Edwards AD, Cox PM. Expression of amyloid precursor protein (beta-APP) in the neonatal brain following hypoxic ischaemic injury. Neuropathol Appl Neurobiol 1998;24: 346–52.

    Article  CAS  PubMed  Google Scholar 

  147. Popa-Wagner A, Schroder E, Walker LC, Kessler C. Beta-amyloid precursor protein and beta-amyloid peptide immunoreactivity in the rat brain after middle cerebral artery occlusion: effect of age. Stroke 1998;29: 2196–202.

    Article  CAS  PubMed  Google Scholar 

  148. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG. Age-dependent changes in brain, CSF, and plasma amyloid β protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 2001;21:372–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jabłoński M, Gunko VM, Golovan AP, Leboda R, Skubiszewska-Zięba J, Pluta R, et al. Textural characteristics of model and natural bone tissues and interfacial behavior of bound water. J Coll Interface Sci 2013;392: 446–62.

    Article  CAS  Google Scholar 

  150. De la Torre JC. Is Alzheimer’s disease preceded by neurodegeneration or cerebral hypoperfusion. Ann Neurol 2005;57:783–4.

    Article  PubMed  Google Scholar 

  151. Bell R, Zlokovic B. Neurovascular mechanisms and blood-brain barrier disorders in Alzheimer’s disease. Acta Neuropathol 2009;118:103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cummings JL, Miller B, Hill MA, Neshkes R. Neuropsychiatric aspects of multi-infarct dementia and dementia of the Alzheimer type. Arch Neurol 1987;44:389–93.

    Article  CAS  PubMed  Google Scholar 

  153. Breteler MM, Bots ML, Ott A, Hofman A. Risk factors for vascular disease and dementia. Haemostasis 1998;28:167–73.

    CAS  PubMed  Google Scholar 

  154. Breteler MM. Vascular risk factors for Alzheimer’s disease: an epidemiologic perspective. Neurobiol Aging 2000;21:153–60.

    Article  CAS  PubMed  Google Scholar 

  155. Koistinaho M, Kettunen MI, Goldsteins G, Keinanen R, Salminen A, Ort M, et al. β-Amyloid precursor protein transgenic mice that harbor diffuse Aβ deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. Proc Natl Acad Sci USA 2002;99:1610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cohan ChH, Neumann JT, Dave KR, Alekseyenko A, Binkert M, Stransky K, et al. Effect of cardiac arrest on cognitive impairment and hippocampal plasticity in middle-aged rats. PLoS ONE 2015;10:e0124918. http://dx.doi.org/10.1371/journal.pone.0124918.

    PubMed  Google Scholar 

  157. Pluta R, Barcikowska M, Misicka A, Lipkowski AW, Spisacka S, Januszewski S. Ischemic rats as a model in the study of the neurobiological role of human β-amyloid peptide. Time-dependent disappearing diffuse amyloid plaques in brain. NeuroReport 1999;10:3615–9.

    Article  CAS  PubMed  Google Scholar 

  158. Pluta R, Ułamek M. New proposals for treatment sporadic Alzheimer’s disease. Cent Nerv Syst Agents Med Chem 2008;8:286–96.

    Article  CAS  Google Scholar 

  159. Lo EH, Moskowitz MA, Jacobs TP. Exciting, radical, suicidal how brain cells die after stroke. Stroke 2005;36:189–92.

    Article  PubMed  Google Scholar 

  160. Uetsuki T, Takemoto K, Nishimura I, Okamoto M, Niinobe M, Momoi T, et al. Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J Neurosci 1999;19: 6955–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 2003;23:5088–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pluta R, Misicka A, Januszewski S, Barcikowska M, Lipkowski AW. Transport of human β-amyloid peptide through the rat blood-brain barrier after global cerebral ischemia. Acta Neurochir (Suppl) 1997;70:247–9.

    CAS  Google Scholar 

  163. Pluta R, Misicka A, Barcikowska M, Spisacka S, Lipkowski AW, Januszewski S. Possible reverse transport of β-amyloid peptide across the blood-brain barrier. Acta Neurochir 2000;76(Suppl.):73–7.

    CAS  Google Scholar 

  164. Zetterberg H, Mörtberg E, Song L, Chang L, Provuncher GK, Patel PP, et al. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLoS ONE 2011;6(12):e28263. http://dx.doi.org/10.1371/journal.pone.0028263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pluta R, Jolkkonen J, Cuzzocrea S, Pedata F, Cechetto D, Popa-Wagner A. Cognitive impairment with vascular impairment and degeneration. Curr Neurovasc Res 2011;8:342–50.

    Article  CAS  PubMed  Google Scholar 

  166. Pluta R, Bogucka-Kocka A, Ułamek-Kozioł M, Furmaga-Jabłońska W, Januszewski S, Brzozowska J, et al. Neurogenesis and neuroprotection in postischemic brain neurodegeneration with Alzheimer phenotype: is there a role for curcumin. Folia Neuropathol 2015;53:89–99.

    Article  PubMed  Google Scholar 

  167. Pasquier F, Leys D. Why are stroke patients prone to develop dementia. J Neurol 1997;244:135–42.

    Article  CAS  PubMed  Google Scholar 

  168. Saver JL. Time is brain — quantified. Stroke 2006;37:263–6.

    Article  PubMed  Google Scholar 

  169. Tan Y, Zhang Q, Wong SG, Hua Q. Anti-Alzheimer therapeutic drugs targeting g-secretase. Curr Top Med Chem 2015;16:549–57.

    Article  CAS  Google Scholar 

  170. Wischik CM, Harrington CR, Storey JM. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol 2014;88:529–39.

    Article  CAS  PubMed  Google Scholar 

  171. Zhang GS, Tian Y, Huang JY, Tao RR, Liao MH, Lu YM, et al. The g-secretase blocker DAPT reduces the permeability of the blood-brain barrier by decreasing the ubiquitination and degradation of occludin during permanent brain ischemia. CNS Neurosci Ther 2013;19:53–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryszard Pluta or Stanisław J. Czuczwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ułamek-Kozioł, M., Pluta, R., Bogucka-Kocka, A. et al. Brain ischemia with Alzheimer phenotype dysregulates Alzheimer’s disease-related proteins. Pharmacol. Rep 68, 582–591 (2016). https://doi.org/10.1016/j.pharep.2016.01.006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.01.006

Keywords

Navigation