Skip to main content
Log in

Differential Changes in Phosphorylation of Tau at PHF-1 and 12E8 Epitopes During Brain Ischemia and Reperfusion in Gerbils

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cortical neurons are vulnerable to ischemic insult, which may cause cytoskeletal changes and neurodegeneration. Tau is a microtubule-associated protein expressed in neuronal and glial cells. We examined the phosphorylation status of tau protein in the gerbil brain cortex during 5 min ischemia induced by bilateral common carotid artery occlusion followed by reperfusion for 20 min to 7 days. Control brain homogenates contained 63, 65 and 68 kD polypeptides of tau immunoreactive with Alz 50, Tau 14 and Tau 46 antibodies raised against non-phosphorylated tau epitopes. Gerbil tau was also immunoreactive with some (PHF-1 and 12E8) but not all (AT8, AT100, AT180 and AT270) antibodies raised against phosphorylated tau epitopes. PHF-1 recognized a single 68 kD polypeptide and 12E8 bound the 63 kD polypeptide. During 5 min ischemia, PHF-1 immunoreactivity declined to 6%, then recovered to control levels after 20 min of blood recirculation and subsequently increased above control values 3 and 7 days later. In contrast, 12E8 immunoreactivity remained stable during ischemia and reperfusion. Our results suggest that the two phosphorylated epitopes of tau are regulated by different mechanisms and may play different roles in microtubule dynamics. They may also define various pools of neuronal/glial cells vulnerable to ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Domanska-Janik K, Lazarewicz J, Noremberg K, Strosznajder J, Zalewska T (1985) Metabolic disturbances of synaptosomes isolated from ischemic gerbil brain. Neurochem Res 10:649–665

    Article  PubMed  CAS  Google Scholar 

  2. Ueda H, Tagawa K, Furuya E, Matsumoto M, Yanagihara T (1999) A combined analysis of regional energy metabolism and immunohistochemical ischemic damage in the gerbil brain. J Neurochem 72:1232–1242

    Article  PubMed  CAS  Google Scholar 

  3. Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, Gonzalez M, Chan PH (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31:105–116

    Article  PubMed  CAS  Google Scholar 

  4. Crain BJ, Westerkam WD, Harrison AH, Nadler JV (1988) Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study. Neuroscience 27:387–402

    Article  PubMed  CAS  Google Scholar 

  5. Arai H, Passonneau JV, Lust WD (1986) Energy metabolism in delayed neuronal death of CA1 neurons of the hippocampus following transient ischemia in the gerbil. Metab Brain Dis 1:263–278

    Article  PubMed  CAS  Google Scholar 

  6. Ouyang YB, Tan Y, Comb M, Liu CL, Martone ME, Siesjo B, Hu BR (1999) Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome c and activation of caspase-like proteases. J Cereb Blood Flow Metab 19:1126–1135

    Article  PubMed  CAS  Google Scholar 

  7. Mortimer JA, van Duijn CM, Chandra V, Fratiglioni L, Graves AB, Heyman A, Jorm AF, Kokmen E, Kondo K, Rocca WA et al (1991) Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case-control studies. EURODEM risk factors research group. Int J Epidemiol 20(Suppl 2):S28–S35

    PubMed  Google Scholar 

  8. Henon H, Pasquier F, Leys D (2006) Poststroke dementia. Cerebrovasc Dis 22:61–70

    Article  PubMed  CAS  Google Scholar 

  9. Roberts GW (1988). Immunocytochemistry of neurofibrillary tangles in dementia pugilistica and Alzheimer’s disease: evidence for common genesis. Lancet 2:1456–1458

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt ML, Zhukareva V, Newell KL, Lee VM, Trojanowski JQ (2001) Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer’s disease. Acta Neuropathol (Berl) 101:518–524

    CAS  Google Scholar 

  11. Geddes JF, Vowles GH, Nicoll JA, Revesz T (1999) Neuronal cytoskeletal changes are an early consequence of repetitive head injury. Acta Neuropathol (Berl) 98:171–178

    Article  CAS  Google Scholar 

  12. Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E, Blennow K (2001) Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett 297:187–190

    Article  PubMed  CAS  Google Scholar 

  13. Goedert M, Jakes R (2005) Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 1739:240–250

    PubMed  CAS  Google Scholar 

  14. Biernat J, Mandelkow EM (1999) Processes induced by tau protein requires phosphorylation of Serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the Proline-rich domains. Mol Biol Cell 10:727–740

    PubMed  CAS  Google Scholar 

  15. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143:777–794

    Article  PubMed  CAS  Google Scholar 

  16. Lee G (2005) Tau and src family tyrosine kinases. Biochim Biophys Acta 1739:323–330

    PubMed  CAS  Google Scholar 

  17. Matsuo ES, Shin RW, Billingsley ML, Van deVoorde A, O’Connor M, Trojanowski JQ, Lee VM (1994) Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron 13:989–1002

    Article  PubMed  CAS  Google Scholar 

  18. Gartner U, Janke C, Holzer M, Vanmechelen E, Arendt T (1998) Postmortem changes in the phosphorylation state of tau-protein in the rat brain. Neurobiol Aging 19:535–543

    Article  PubMed  CAS  Google Scholar 

  19. Geddes JW, Schwab C, Craddock S, Wilson JL, Pettigrew LC (1994) Alterations in tau immunostaining in the rat hippocampus following transient cerebral ischemia. J Cereb Blood Flow Metab 14:554–564

    PubMed  CAS  Google Scholar 

  20. Shackelford D, Yeh RY (1998) Dephosphorylation of tau during transient forebrain ischemia in the rat. Mol Chem Neuropathol 34:103–120

    PubMed  CAS  Google Scholar 

  21. Mailliot C, Podevin-Dimster V, Rosenthal RE, Sergeant N, Delacourte A, Fiskum G, Buee L (2000) Rapid tau protein dephosphorylation and differential rephosphorylation during cardiac arrest-induced cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 20:543–549

    Article  PubMed  CAS  Google Scholar 

  22. Mayevsky A, Breuer Z (1992) Brain vasculature and mitochondrial responses to ischemia in gerbils. I. Basic anatomical patterns and biochemical correlates. Brain Res 598:242–250

    Article  PubMed  CAS  Google Scholar 

  23. Lazarewicz JW, Salinska E, Spejna E, Gadamski R (1994) Effects of MK-801 and ganglioside GM1 on postischemic prostanoid release and hippocampal lesion in gerbil brain. Acta Neurobiol Exp 54:293–305

    CAS  Google Scholar 

  24. Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY (2006) Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 1090:182–189

    Article  PubMed  CAS  Google Scholar 

  25. Sergeant N, David JP, Lefranc D, Vermersch P, Wattez A, Delacourte A (1997) Different distribution of phosphorylated tau protein isoforms in Alzheimer’s and Pick’s diseases. FEBS Lett 412:578–582

    Article  PubMed  CAS  Google Scholar 

  26. Kalcheva N, Albala JS, Binder LI, Shafit-Zagardo B (1994) Localization of specific epitopes on human microtubule-associated protein 2. J Neurochem 63:2336–2341

    Article  PubMed  CAS  Google Scholar 

  27. Sulkowski G, Struzynska L, Lenkiewicz A, Rafalowska U. (2006) Changes of cytoskeletal proteins in ischaemic brain under cardiac arrest and reperfusion conditions. Folia Neuropathol 44:133–139

    PubMed  CAS  Google Scholar 

  28. Gordon-Krajcer W, Yang L-S, Ksiezak-Reding H (2000) Conformation of paired helical filaments blocks dephosphorylation of epitopes shared with fetal tau except Ser199/202 and Ser202/Thr205. Brain Res 856:163–175

    Article  PubMed  CAS  Google Scholar 

  29. Himmler A, Drechsel D, Kirschner MW, Martin DW Jr (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol 9:1381–1388

    PubMed  CAS  Google Scholar 

  30. Ksiezak-Reding H, Davies P, Yen S-H (1988) Alz 50, a monoclonal antibody to Alzheimer’s disease antigen, cross-reacts with tau proteins from bovine and normal human brain. J Biol Chem 263:7943–7947

    PubMed  CAS  Google Scholar 

  31. Ksiezak-Reding H, Liu W-K, Yen S-H (1992) Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments. Brain Res 597:209–219

    Article  PubMed  CAS  Google Scholar 

  32. Gartner U, Janke C, Holzer M, Vanmechelen E, Arendt T (1998) Postmortem changes in the phosphorylation state of tau-protein in the rat brain. Neurobiol Aging 19:535–543

    Article  PubMed  CAS  Google Scholar 

  33. Wegiel J, Wisniewski HM, Soltysiak Z (1998) Region and cell-type-specific pattern of tau phosphorylation in dog brain. Brain Res 802:259–266

    Article  PubMed  CAS  Google Scholar 

  34. Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Anderton BH (2000) Phosphorylation sites on tau identified by nonoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and p38, and glycogen synthase kinase-3β. J Neurochem 74:1587–1595

    Article  PubMed  CAS  Google Scholar 

  35. Drewes G, Trinczek B, Illenberger S, Biernat J, Schmitt-Ulms G, Meyer HE, Mandelkow EM, Mandelkow E (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 270:7679–7688

    Article  PubMed  CAS  Google Scholar 

  36. Litersky JM, Johnson GV, Jakes R, Goedert M, Lee M, Seubert P (1996) Tau protein is phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II within its microtubule-binding domains at Ser-262 and Ser-356. Biochem J 316(Pt 2):655–660

    PubMed  CAS  Google Scholar 

  37. Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11:153–163

    Article  PubMed  CAS  Google Scholar 

  38. Dewar D, Dawson D (1995) Tau protein is altered by focal cerebral ischemia in the rat: an immunohistochemical and immunoblotting study. Brain Res 684:70–78

    Article  PubMed  CAS  Google Scholar 

  39. Wen Y, Yang S, Liu R, Simpkins JW (2004) Transient cerebral ischemia induces site-specific hyperphosphorylation of tau protein. Brain Res 1022:30–38

    Article  PubMed  CAS  Google Scholar 

  40. Pettigrew LC, Holtz ML, Craddock SD, Minger SL, Hall N, Geddes JW (1996) Microtubular proteolysis in focal cerebral ischemia. J Cereb Blood Flow Metab 16:1189–1202

    Article  PubMed  CAS  Google Scholar 

  41. Zalewska T, Zablocka B, Domanska-Janik K (1996) Changes of Ca2+/calmodulin-dependent protein kinase-II after transient ischemia in gerbil hippocampus. Acta Neurobiol Exp 56:41–48

    CAS  Google Scholar 

  42. Zablocka B, Meternicka K, Zalewska T, Domanska-Janik K (1998) Expression of Ca 2+-dependent (classical) PKC mRNA isophorms after transient cerebral ischemia in gerbil hippocampus. Brain Res 779:254–258

    Article  PubMed  CAS  Google Scholar 

  43. Tanaka K, Ito D, Suzuki S, Dembo T, Kosakai A, Fukuuchi Y (2002) A novel voltage-sensitive Na(+) and Ca(2+) channel blocker, NS-7, prevents suppression of cyclic AMP-dependent protein kinase and reduces infarct area in the acute phase of cerebral ischemia in rat. Brain Res 924:98–108

    Article  PubMed  CAS  Google Scholar 

  44. Endo H, Nito C, Kamada H, Nishi T, Chan PH (2006) Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab Mar 15 [Epub ahead of print]

  45. Sontag E, Nunbhakdi-Craig V, Lee G, Bloom GS, Mumby MC (1996) Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron 17:1201–1207

    Article  PubMed  CAS  Google Scholar 

  46. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22:1942–1950

    Article  PubMed  Google Scholar 

  47. Morioka M, Fukunaga K, Hasegawa S, Okamura A, Korematsu K, Kai Y, Hamada J, Nagahiro S, Miyamoto E, Ushio Y (1999) Activities of calcineurin and phosphatase 2A in the hippocampus after transient forebrain ischemia. Brain Res 828:135–144

    Article  PubMed  CAS  Google Scholar 

  48. Hashimoto T, Kawamata T, Saito N, Sasaki M, Nakai M, Niu S, Taniguchi T, Terashima A, Yasuda M, Maeda K, Tanaka C (1998) Isoform-specific redistribution of calcineurin A alpha and A beta in the hippocampal CA1 region of gerbils after transient ischemia. J Neurochem 70:1289–1298

    Article  PubMed  CAS  Google Scholar 

  49. Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA (2000) Differential activation of MAPK/ERK and p38/SAPK in neurons and glia following focal cerebral ischaemia in the rat. Mol Brain Res 77:65–75

    Article  PubMed  CAS  Google Scholar 

  50. Erdo F, Trapp T, Mies G, Hossmann KA (2004) Immunohistochemical analysis of protein expression after middle cerebral artery occlusion in mice. Acta Neuropathol (Berl) 107:127–136

    Article  CAS  Google Scholar 

  51. Davis DR, Anderton BH, Brion JP, Reynolds CH, Hanger DP (1997) Oxidative stress induces dephosphorylation of tau in rat brain primary neuronal cultures. J Neurochem 68:1590–1597

    Article  PubMed  CAS  Google Scholar 

  52. Gomez-Ramos A, Diaz-Nido J, Smith MA, Perry G, Avila J (2003) Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neurosci Res 71:863–870

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express special thanks to Drs. Peter Davies and Bridget Shafit-Zagardo (Albert Einstein College of Medicine, Bronx, NY), Peter Seubert (Athena Neurosciences, Inc. and Elan Pharmaceuticals, Inc., CA), David Martin (Genentech Inc, San Francisco, CA), André Delacourte and Luc Buée (INSERM U422, Lille Cedex, France), Lester Binder (Northwestern University, IL) and A. Van de Voorde and E. Vanmechelen of Innogenetics, N.V. (Ghent, Belgium) for generous gifts of antibodies. The authors gratefully acknowledge an expert technical assistance of Mrs. Apolonia Ziembowicz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ksiezak-Reding.

Additional information

Special issue dedicated to John P. Blass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon-Krajcer, W., Kozniewska, E., Lazarewicz, J.W. et al. Differential Changes in Phosphorylation of Tau at PHF-1 and 12E8 Epitopes During Brain Ischemia and Reperfusion in Gerbils. Neurochem Res 32, 729–737 (2007). https://doi.org/10.1007/s11064-006-9199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9199-3

Keywords

Navigation