Skip to main content
Log in

Dephosphorylation of tau during transient forebrain ischemia in the rat

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

The effect of transient cerebral ischemia on phosphorylation of the microtubule-associated protein (MAP) τ was investigated using the rat four-vessel occlusion model. Phosphorylation of τ is proposed to regulate its binding to microtubules, influencing the dynamics of microtubule assembly necessary for axonal growth and neurite plasticity. In this study, τ was rapidly dephosphorylated during ischemia in the hippocampus, neocortex, and striatum. Dephosphorylation of τ was observed within 5 min of occlusion and increased after 15 min in all three brain regions, regardless of their relative vulnerability to the insult. Thus, dephosphorylation of τ is an early marker of ischemia and precedes the occlusion time required to cause extensive neuronal cell death in this model. On restoration of blood flow for a little as 15 min, τ was phosphorylated at a site(s) that causes a reduction in its electrophoretic mobility. The dephosphorylation/phosphorylation of τ may alter its distribution between axon and cell body, and affect its susceptibility to proteolysis. These changes would be expected to influence microtubule stability, possibly contributing to disruption of axonal transport, but also allowing neurite remodeling in a regenerative response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MAP:

microtubule-associated protein

AD:

Alzheimer disease

PHF:

paired helical filaments

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

BSA:

bovine serum albumin

TBS:

Tris-buffered saline

MAb:

monoclonal antibody

RSCIM:

rabbit spinal cord ischemia model

References

  • Biernat J., Mandelkow E.-M., Schröter C., Lichtenberg-Kraag B., Steiner B., Berling B., et al. (1992) The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region.EMBO J. 11, 1593–1597.

    PubMed  CAS  Google Scholar 

  • Biernat J., Gustke N., Drewes G., Mandelkow E.-M., and Mandelkow E. (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding.Neuron 11, 53–163.

    Article  Google Scholar 

  • Billingsley M. L. and Kincaid R. L. (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration.Biochem. J. 323, 577–591.

    PubMed  CAS  Google Scholar 

  • Binder L. I., Frankfurter A., and Rebhun L. I. (1985) The distribution of tau in the mammalian central nervous system.J. Cell Biol. 101, 1371–1378.

    Article  PubMed  CAS  Google Scholar 

  • Bush M. L., Miyashiro J. S., and Ingram V. M. (1995) Activation of a neurofilament kinase, a tau kinase, and a tau phosphatase by decreased ATP levels in nerve growth factordifferentiated PC-12 cells.Proc. Natl. Acad. Sci. USA 92, 1861–1865.

    Article  PubMed  CAS  Google Scholar 

  • Chiang M. F., Liu W.-K., and Yen S.-H. (1993) Reversible heat stress-related loss of phosphorylated Alzheimer-type epitopes in tau proteins of human neuroblastoma cells.J. Neurosci. 13, 4854–4860.

    PubMed  CAS  Google Scholar 

  • Choi D. W. (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death.Annu. Rev. Neurosci. 13, 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Davis D. R., Brion J.-P., Couck A.-M., Gallo J.-M., Hanger D. P., Ladhani K., et al. (1995) The phosphorylation state of the microtubule-associated protein tau as affected by glutamate, colchicine and ß-amyloid in primary rat cortical neuronal cultures.Biochem. J. 309, 941–949.

    PubMed  CAS  Google Scholar 

  • Davis D. R., Anderton B. H., Brion J.-P., Reynolds C. H., and Hanger D. P. (1997) Oxidative stress induces dephosphorylation of τ in rat brain primary neuronal cultures.J. Neurochem. 68, 1590–1597.

    PubMed  CAS  Google Scholar 

  • Dewar D. and Dawson D. (1995) Tau protein is altered by focal cerebral ischaemia in the rat: an immunohistochemical and immunoblotting study.Brain Res. 684, 70–78.

    Article  PubMed  CAS  Google Scholar 

  • Drechsel D. N., Hyman A. A., Cobb M. H., and Kirschner M. W. (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau.Mol. Biol. Cell. 3, 1141–1154.

    PubMed  CAS  Google Scholar 

  • Drewes G., Mandelkow E.-M., Baumann K., Goris J., Merlevede W., and Mandelkow E. (1993) Dephosphorylation of tau protein and Alzheimer paired helical filaments by calcineurin and phosphatase-2A.FEBS Lett. 336, 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Drewes G., Trinczek B., Illenberger S., Biernat J., Schmitt-Ulms G., Meyer H. E., et al. (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark).J. Biol. Chem. 270, 7679–7688.

    Article  PubMed  CAS  Google Scholar 

  • Drubin D., Kobayashi S., and Kirschner M. (1986) Association of tau protein with microtubules in living cells.Ann. NY Acad. Sci. 466, 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Fleming L. M. and Johnson G. V. W. (1995) Modulation of the phosphorylation state of tauin situ: the roles of calcium and cyclic AMP.Biochem. J. 309, 41–47.

    PubMed  CAS  Google Scholar 

  • Galloway P. G., Perry G., Kosik K. S., and Gambetti P. (1987) Hirano bodies contain tau protein.Brain Res. 403, 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Geddes J. W., Bondada V., and Keller J. N. (1994a) Effects of intrahippocampal colchicine administration of the levels and localization of microtubule-associated proteins, tau and MAP2.Brain Res. 633, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Geddes J. W., Schwab C., Craddock S., Wilson J. L., and Pettigrew L. C. (1994b) Alterations in τ immunostaining in the rat hippocampus following transient cerebral ischemia.J. Cereb. Blood Flow Metab. 14, 554–564.

    PubMed  CAS  Google Scholar 

  • Goedert M. (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease.Trends Neurol. Sci. 16, 460–465.

    Article  CAS  Google Scholar 

  • Goedert M., Cohen E. S., Jakes R., and Cohen P. (1992) p42 map kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A.FEBS Lett. 312, 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Gong C.-X., Grundke-Iqbal I., Damuni Z., and Khalid I. (1994a) Dephosphorylation of microtubule-associated protein tau by protein phosphatase-1 and-2C and its implication in Alzheimer disease.FEBS Lett. 341, 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Gong C.-X., Singh T. J., Grundke-Iqbal I., and Iqbal K. (1994b) Alzheimer’s disease abnormally phosphorylated τ is dephosphorylated by protein phosphatase-2B (calcineurin).J. Neurochem. 62, 803–806.

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I., Iqbal K., Tung Y., Quinlan M., Wisniewski H. M., and Binder L. I. (1986) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology.Proc. Natl. Acad. Sci. USA 83, 4913–4917.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N. (1994) Microtubule organization and dynamics dependent on microtubuleassociated proteins.Curr. Opinion Cell Biol. 6, 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Hsu M. and Buzsáki G. (1993) Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia.J. Neurosci. 13, 3964–3979.

    PubMed  CAS  Google Scholar 

  • Kanai Y. and Hirokawa N. (1995) Sorting mechanisms of tau and MAP2 in neurons: Suppressed axonal transit of MAP2 and locally regulated microtubule binding.Neuron 14, 421–432.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K., Matsumoto M., Niinobe M., Mikoshiba K., Hata R., Ueda H., et al. (1989) Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage-immunohistochemical investigation of dendritic damage.Neuroscience 31, 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Kosik K. S. and McConlogue L. (1994) Microtubule-associated protein function: Lessons from expression inSpodoptera frugiperda cells.Cell Motil. Cytoskel. 28, 195–198.

    Article  CAS  Google Scholar 

  • Kosik K. S., Orcchio L. D., Binder L., Trojanowski J. Q., Lee V. M., and Lee G. (1988) Epitopes that span the tau molecule are shared with paired helical filaments.Neuron 1, 817–825.

    Article  PubMed  CAS  Google Scholar 

  • Kowall N. W. and Kosik K. S. (1987) Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease.Ann. Neurol. 22, 639–643.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U. K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4.Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lee G. (1990) Tau protein: an uptade on structure and function.Cell Motil. Cytoskel. 15, 199–203.

    Article  CAS  Google Scholar 

  • Lee K. S., Frank S., Vanderklish P., Arai A., and Lynch G. (1991) Inhibition of pro protects hippocampal neurons from ischemia.Proc. Natl. Acad. Sci. USA 88, 7233–7237.

    Article  PubMed  CAS  Google Scholar 

  • Lindwall G. and Cole R. D. (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly.J. Biol. Chem. 259, 5301–5305.

    PubMed  CAS  Google Scholar 

  • Litersky J. M. and Johnson G. V. W. (1992) Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain.J. Biol. Chem. 267, 1563–1568.

    PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with Folin phenol reagent.J. Biol. Chem. 193, 265–272.

    PubMed  CAS  Google Scholar 

  • Mandelkow E. and Mandelkow E. (1993) Tau as a marker for Alzheimer’s disease.Trends Biochem. Sci. 18, 480–483.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo E. S., Shin R., Billingsley M. L., Van de Voorde A., O’Connor M., Trojanowski J. Q., et al. (1994) Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau.Neuron 13, 989–1002.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1992) Effects of microtubule stabilization and destabilization on tau immunoreactivity in cultured hippocampal neurons.Brain Res. 582, 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Merrick S. E., Demoise D. C., and Lee V. M. (1996) Site-specific dephosphorylation of tau protein at Ser202/Thr205 in response to microtubule depolymerization in cultured human neurons involves protein phosphatase 2A.J. Biol. Chem. 271, 5589–5594.

    Article  PubMed  CAS  Google Scholar 

  • Morishima-Kawashima M., Hasegawa M., Takio K., Suzuki M., Yoshida H., Watanabe A., et al. (1995) Hyperphosphorylation of tau in PHF.Neurobiol. Aging 16, 365–380.

    Article  PubMed  CAS  Google Scholar 

  • Norman S. G. P. and Johnson G. V. W. (1994) Compromised mitochondrial function results in dephosphorylation of tau through a calcium-dependent process in rat brain cerebral cortical slices.Neurochem. Res. 19, 1151–1158.

    Article  PubMed  CAS  Google Scholar 

  • Papasozomenos S. C. and Binder L. I. (1987) Phosphorylation determines two distinct species of tau in the central nervous system.Cell Motil. Cytoskel. 8, 210–226.

    Article  CAS  Google Scholar 

  • Papasozomenos S. C. and Su Y. (1991) Altered phosphorylation of τ protein in heat-shocked rats and patients with Alzheimer disease.Proc. Natl. Acad. Sci. USA 88, 4543–4547.

    Article  PubMed  CAS  Google Scholar 

  • Papasozomenos S. C. and Su Y. (1995) Rapid dephosphorylation of τ in heat-shocked fetal rat cerebral explants: prevention and hyperphosphorylation by inhibitors of protein phosphatases PP1 and PP2A.J. Neurochem. 65, 396–406.

    PubMed  CAS  Google Scholar 

  • Pettigrew L. C., Holtz J. L., Craddock S. D., Minger S. L., Hall N., and Geddes J. W. (1996) Microtubular proteolysis in focal cerebral ischemia.J. Cereb. Blood Flow Metab. 16, 1189–1202.

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli W. A. and Brierley J. B. (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat.Stroke 10, 267–272.

    PubMed  CAS  Google Scholar 

  • Pulsinelli W. A. and Buchan A. M. (1988) The four-vessel occlusion rat model: Method for complete occlusion of vertebral arteries and control of collateral circulation.Stroke 19, 913–914.

    PubMed  CAS  Google Scholar 

  • Pulsinelli W. A., Brierley J. B., and Plum F. (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia.Ann. Neurol. 11, 492–498.

    Google Scholar 

  • Rothman S. M. and Olney J. W. (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage.Ann. Neurol. 19, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Shackelford D. A. and Nelson K. E. (1996) Changes in phosphorylation of τ during ischemia and reperfusion in the rabbit spinal cord.J. Neurochem. 66, 286–295.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö B. K. and Bengtsson F. (1989) Calcium fluxes, calcium antagonists, and calciumrelated pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis.J. Cereb. Blood Flow Metab. 9, 127–140.

    PubMed  Google Scholar 

  • Smith, M.-L., Auer R. N., and Siesjö B. K. (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia.Acta Neuropathol. 64, 319–332.

    Article  PubMed  CAS  Google Scholar 

  • Szendrei G. I., Lee V. M., and Otvos L., Jr (1993) Recognition of the minimal epitope of monoclonal antibody tau-1 depends upon the presence of a phosphate group but not its location.J. Neurosci. Res. 34, 243–249.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski J. Q. and Lee V. M. (1995) Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases.FASEB J. 9, 1570–1576.

    PubMed  CAS  Google Scholar 

  • Winer B. J. (1971)Statistical Principles in Experimental Design, 2nd ed. McGraw-Hill, New York.

    Google Scholar 

  • Yamamoto H., Saitoh Y., Fukunaga K., Nishimura H., and Miyamoto E. (1988) Dephosphorylation of microtubule proteins by brain protein phosphatases 1 and 2A, and its effect on microtubule assembly.J. Neurochem. 50, 1614–1623.

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara T., Brengman J. W., and Mushynski W. E. (1990) Differential vulnerability of microtubule components in cerebral ischemia.Acta Neuropathol. 80, 499–505.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah A. Shackelford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shackelford, D.A., Yeh, R.Y. Dephosphorylation of tau during transient forebrain ischemia in the rat. Molecular and Chemical Neuropathology 34, 103–120 (1998). https://doi.org/10.1007/BF02815073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815073

Index Entries

Navigation