Skip to main content
Log in

Biofluidics Study in Digestive System with Thermal Conductivity of Shape Nanosize H2O+Cu Nanoparticles

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In the present article, peristaltic transport of copper nano fluid in a curved channel with complaint walls is studied. Shape effects of nanosize particles are discussed. The mathematical formulation encompasses momentum and heat conservation equations with appropriate boundary conditions for compliant walls. Sophisticated correlations are employed for thermal conductivity of the nanoparticles. The nonlinear boundary value problem is normalized with appropriate variables and closed-form solutions are derived for stream function, pressure gradient and temperature profile. A detailed study is performed for the influence of various nanoparticle geometries (bricks, cylinders and platelets). With greater curvature value, pressure gradient is enhanced for various nanoparticle geometries. Temperature is dramatically modified with nanoparticle geometry and greater thermal conductivity is achieved with brick shaped nanoparticles in the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Latham T W. Fluid Motion in a Peristaltic Pump, M. S. thesis, Massachusetts Institute of Technology, America 1966.

    Google Scholar 

  2. Sato H, Kawai T, Fujita T, Okabe M. Two dimensional peristaltic flow in curved channels. Transactions of the Japan Society of Mechanical Engineers B, 2000, 66, 679–685.

    Article  Google Scholar 

  3. Tripathi D. A mathematical model for the movement of food bolus of varying viscosities through the oesophagus. Acta Astronautica, 2011, 69, 429–439.

    Article  Google Scholar 

  4. Tripathi D, Bég O A. Transient magneto-peristaltic flow of couple stress biofluids: A magneto-hydro-dynamical study on digestive transport phenomena. Mathematical Biosciences, 2013, 246, 72–83.

    Article  MathSciNet  MATH  Google Scholar 

  5. Tripathi D, Bég O A. Peristaltic propulsion of generalized Burgers’ fluids through a non-uniform porous medium: A study of chyme dynamics through the diseased intestine. Mathematical Biosciences, 2014, 248, 67–77.

    Article  MathSciNet  MATH  Google Scholar 

  6. Tripathi D. A mathematical study on three layered oscillatory blood flow through stenosed arteries. Journal of Bionic Engineering, 2012, 9, 119–131.

    Article  Google Scholar 

  7. Ebaid A. Effects of magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel. Physics Letters A, 2008, 372, 4493–4499.

    Article  MATH  Google Scholar 

  8. Kramer M O. Readers forum. Journal of the Aerospace Sciences, 1960, 68, 27.

    Google Scholar 

  9. Kramer M O. Boundary layer stabilization by distributed damping. Journal of the American Society of Naval Engineers, 1960, 72, 25–34.

    Article  Google Scholar 

  10. Mittra T K, Prasad S N. On the influence of wall properties and Poiseuille flow in peristalsis. Journal of Biomechanics, 1973, 6, 681–693.

    Article  Google Scholar 

  11. Radhakrishnamacharya G, Srinivasulu Ch. Influence of wall properties on peristaltic transport with heat transfer. Comptes Rendus Mécanique, 2007, 335, 369–373.

    Article  MATH  Google Scholar 

  12. Muthu P, Rathish Kumar B V, Peeyush Chandra. Peristaltic motion of micropolar fluid in circular cylindrical tubes: Effect of wall properties. Applied Mathematical Modelling, 2008, 32, 2019–2033.

    Article  MathSciNet  MATH  Google Scholar 

  13. Srinivas S, Gayathri R, Kothandapani M. The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport. Computer Physics Communications, 2009, 180, 2115–2122.

    Article  MathSciNet  MATH  Google Scholar 

  14. Srinivas S, Kothandapani M. The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Applied Mathematics and Computation, 2009, 213, 197–208.

    Article  MathSciNet  MATH  Google Scholar 

  15. Afifi N A S, Mahmoud S R, Al-Isede H M. Effect of Magnetic Field and Wall Properties on Peristaltic Motion of Micropolar Fluid. International Mathematical Forum, 2011, 6, 1345–1356.

    MathSciNet  MATH  Google Scholar 

  16. Rathod V P, Kulkarni P. The Influence of wall properties on MHD peristaltic transport of dusty fluid. Advances in Applied Science Research, 2011, 2, 265–279.

    Google Scholar 

  17. Sankad G C, Radhakrishnamacharya G. Effect of magnetic field on the peristaltic transport of couple stress fluid in a channel with wall properties. International Journal of Bio-mathematics, 2011, 4, 365–378.

    Article  MathSciNet  MATH  Google Scholar 

  18. Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles. In Siginer DA, Wang H P. (eds.), Developments and Applications of Non-Newtonian Flows, ASME, New York, USA, 1995, 66, 99–105.

    Google Scholar 

  19. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. International Journal of Heat and Mass Transfer, 2000, 43, 3701–3707.

    Article  MATH  Google Scholar 

  20. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 2003, 46, 3639–3653.

    Article  MATH  Google Scholar 

  21. Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 2009, 52, 3187–3196.

    Article  MATH  Google Scholar 

  22. Akbar N S, Nadeem S. Endoscopic effects on the peristaltic flow of a nanofluid. Communications in Theoretical Physics, 2011, 56, 761–768.

    Article  MATH  Google Scholar 

  23. Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu-H20 nanofluid on entropy generation. International Journal of Heat and Mass Transfer, 2015, 581, 449–456.

    Article  Google Scholar 

  24. Akbar N S, Butt A W. Ferromagnetic effects for peristaltic flow of Cu-water nanofluid for different shapes of nanosize particles. Applied Nanoscience, 2015, 0430-x.

    Google Scholar 

  25. Ellahi R, Rahman S U, Nadeem S. Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles. Physics Letters A, 2014, 378, 2973–2980.

    Article  MATH  Google Scholar 

  26. Akbar N S, Raza M, Ellahi R. Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. Journal of Magnetism and Magnetic Materials, 2015, 381, 405–415.

    Article  Google Scholar 

  27. Ellahi R, Rahman S U, Nadeem S, Akbar N S. Blood flow of nano fluid through an artery with composite stenosis and permeable walls. Applied Nanosciences, 2014, 4, 919–926.

    Article  Google Scholar 

  28. Sheikholeslami M, Bandpy M G., Ellahi R, Hassan M, Soleimani S. Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM. Journal of Magnetism and Magnetic Materials, 2014, 349, 188–200.

    Article  Google Scholar 

  29. Akbar N S. Bioconvection peristaltic flow in an asymmetric channel filled by nanofluid containing gyrotactic microorganism: Bio nano engineering model. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 214–224.

    Article  MathSciNet  MATH  Google Scholar 

  30. Akbar N S, Mustafa M T. Ferromagnetic effects for nan-ofluid venture through composite permeable stenosed arteries with different nanosize particles. AIP Advances, 2015, 5, 077102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noreen Sher Akbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, N.S. Biofluidics Study in Digestive System with Thermal Conductivity of Shape Nanosize H2O+Cu Nanoparticles. J Bionic Eng 12, 656–663 (2015). https://doi.org/10.1016/S1672-6529(14)60155-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60155-4

Keywords

Navigation