Skip to main content
Log in

Structural and Mechanical Characterization of Atrina Pectinata and Freshwater Mussel Shells

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The microstructures of Atrina pectinata and freshwater mussel shells are investigated by optical microscopy and scanning electron microscopy. The mechanical properties of these shells are characterized by nanoindentation and three-point bending tests. Results show that both shells possess a prismatic microstructure mainly composed of columnar crystals and an organic matrix. The fracture toughness of the prismatic structure of Atrina pectinata and freshwater mussel are approximately 1.15 MPa·m½ and 0.87 MPa·m½, respectively, while the fracture toughness of natural calcite is approximately 0.2 MPa·m½. Calculated results from indentations agree with those obtained from the three-point bending tests. The columnar crystal material shows excellent fracture toughness due to grain refinement. In addition, the organic matrix of the prismatic layer can arrest cracks, and thereby improves the fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Z W, Li X D. Origin of flaw-tolerance in nacre. Scientific Reports, 2013, 3, 1–6.

    Google Scholar 

  2. Ma J F, Chen W Y, Zhao L, Zhao D H. Elastic buckling of bionic cylindrical shells based on bamboo. Journal of Bionic Engineering, 2008, 5, 231–238.

    Article  Google Scholar 

  3. Kamat S, Su X, Ballarini R, Heuer A H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature, 2000, 405, 1036–1040.

    Article  Google Scholar 

  4. Hou D, Zhou G, Zheng M. Conch shell structure and its effect on mechanical behaviors. Biomaterials, 2004, 25, 751–756.

    Article  Google Scholar 

  5. Liang Y, Zhao J, Wu C W. The micro/nanostructure characteristics and the mechanical properties of Hemifusus tuba conch shell. Journal of Bionic Engineering, 2010, 7, 307–313.

    Article  Google Scholar 

  6. Lv J L, Jiang Y G, Zhang D Y, Zhao Y J, Sun X J. Characterization on the fatigue performance of a piezoelectric microvalve with a microfabricated silicon valve seat. Journal of Micromechanics and Microengineering, 2013, 24, 015013.

  7. Kamat S, Kessler H, Ballarini R, Nassirou M, Heuer A H. Fracture mechanisms of the Strombus gigas conch shell: II-microme chanics analyses of multiple cracking and large-scale crack bridging. Acta Materialia, 2004, 52, 2395–2406.

    Article  Google Scholar 

  8. Li X D, Chang W C, Chao Y J, Wang R Z, Chang M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Letters, 2004, 4, 613–617.

    Article  Google Scholar 

  9. Antonio C, Elizabeth M H, Marc W. Aragonitic dendritic prismatic shell microstructure in Thracia (Bivalvia, Anomalodesmata). Invertebrate Biology, 2012, 131, 19–29.

    Article  Google Scholar 

  10. Bedabibhas M, Kalpana S K, Dinesh R K. Experimental investigation of nanomechanics of the mineral protein interface in nacre. Mechanics Research Communications, 2008, 35, 17–23.

    Article  Google Scholar 

  11. Jackson A P, Vincent J F V, Turner R M. The mechanical design of nacre. Proceedings of the Royal Society B-Biological Sciences. 1988, 234, 415–440.

    Article  Google Scholar 

  12. Barthelat F, Espinosa H D. An experimental investigation of deformation and fracture of nacre-mother of pearl. Experimental Mechanics, 2007, 47, 311–324.

    Article  Google Scholar 

  13. Bond G M, Richman R H, McNaughton W P. Mimicry of natural material designs and processes. Journal of Materials Engineering and Performance, 1995, 4, 334–345.

    Article  Google Scholar 

  14. Currey J D, Zioupos P, Peter D, Casinos A. Mechanical properties of nacre and highly mineralized bone. Proceedings of the Royal Society B-Biological Sciences, 2001, 268, 107–111.

    Article  Google Scholar 

  15. Hannes K, Roberto B, Robert L M, Liisa T K, Arthur H H. A biomimetic example of brittle toughening: (I) steady state multiple cracking. Computational Materials Science, 1996, 5, 157–166.

    Article  Google Scholar 

  16. Kuhn-Spearing L T, Kessler H, Chateau E, Ballarini R, Heuer A H. Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates. Journal of Materials Science, 1996, 31, 6583–6594.

    Article  Google Scholar 

  17. Chen L, Ballarini R, Kahn H, Heuer A H. Bioinspired micro-composite structure. Journal of Materials Research, 2007, 22, 124–131.

    Article  Google Scholar 

  18. Tang Z, Kotov N A, Magonov S, Ozturk B. Nanostructured artificial nacre. Nature Materials, 2003, 2, 413–418.

    Article  Google Scholar 

  19. Rubner M. Synthetic sea shell. Nature, 2003, 423, 925–926.

    Article  Google Scholar 

  20. Tong H, Hu J M, Ma W T, Zhong G R, Yao S N, Cao N X. In situ analysis of the organic framework in the prismatic layer of mollusc shell. Biomaterials, 2002, 23, 2593–2598.

    Article  Google Scholar 

  21. Currey J D, Taylor J D. The mechanical behaviour of some molluscan hard tissues. Journal of Zoology, 1974, 173, 395–406.

    Article  Google Scholar 

  22. Taylor J D, Layman M. The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology, 1972, 15, 73–87.

    Google Scholar 

  23. Vancolen S, Verrecchia E. Does prism width from the shell prismatic layer have a random distribution? Geo-Marine Letters, 2008, 28, 383–393.

    Article  Google Scholar 

  24. Fu G. Calcium Carbonate Biomineralization: Characterizing the Molecular Mechanisms Protein-Mineral Interaction. PhD thesis, University of California, Santa Barbara, USA, 2005.

    Google Scholar 

  25. Feng Q, Li H, Pu G, Zhang D, Cui F, Li H. Crystallographic alignment of calcite prisms in the oblique prismatic layer of Mytilus edulis shell. Journal of Materials Science, 2000, 35, 3337–3340.

    Article  Google Scholar 

  26. Lawn B R. Fracture of Brittle Solids, Cambridge University Press, Cambridge, UK, 1993.

    Book  Google Scholar 

  27. Anstis G R, Chantikul P, Lawn B R, Marshall D B. A Critical evaluation of indentation techniques for measuring fracture toughness: I, Direct Crack Measurements. Journal of the American Ceramic Society, 1981, 64, 533–538.

    Article  Google Scholar 

  28. Niihara K, Morena R, Hasselman D P H. Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios. Journal of Materials Science Letters, 1982, 1, 13–16.

    Article  Google Scholar 

  29. Szutkowska M. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges. Journal of Achievements in Materials and Manufacturing Engineering, 2012, 54, 202–210.

    Google Scholar 

  30. Sun J, Ling M, Wang Y, Chen D, Zhang S J, Tong J, Wang S. Quasi-static and dynamic nanoindentation of some selected biomaterials. Journal of Bionic Engineering, 2014, 11, 144–150.

    Article  Google Scholar 

  31. Naimi-Jamal M R, Kaupp G. Nutshells’ mechanical response: from nanoindentation and structure to bionics models. Journal of Materials Chemistry, 2011, 21, 8389–8400.

    Article  Google Scholar 

  32. Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004, 19, 3–20.

    Article  Google Scholar 

  33. Fischer-Cripps A C. A review of analysis methods for sub-micron indentation testing. Vacuum, 2000, 58, 569–585.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Jiang, Y. & Zhang, D. Structural and Mechanical Characterization of Atrina Pectinata and Freshwater Mussel Shells. J Bionic Eng 12, 276–284 (2015). https://doi.org/10.1016/S1672-6529(14)60120-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60120-7

Keywords

Navigation