Skip to main content
Log in

Effect of Slope Degree on the Lateral Bending in Gekko geckos

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

A gecko’s habitat possesses a wide range of climbing slopes that pose a number of postural challenges for climbing locomotion. Few studies have examined the relationship between the lateral bending of the trunk of a gecko and other aspects of locomotion when climbing. In this paper, three-dimensional reaction forces and high-speed videos of Gekko geckos moving on different slopes are used to reveal how the lateral bending of the animal’s trunk responds to changing slopes. The results of such observations indicate that the minimum bending radius continually decreases with an increase in the slope, illustrating that the degree of bending of the trunk becomes significantly greater. Moreover, a lateral bending mechanical model is used to show the interrelation between the lateral bending in the frontal plane and the sagittal deformation of the trunk caused by gravity. Taken together, these results have advanced our understanding of the role of lateral bending of vertebrates when climbing on a slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wakeling J M, Johnston I A. Body bending during fast-starts in fish can be explained in terms of muscle torque and hydrodynamic resistance. Journal of Experimental Biology, 1999, 202, 675–682.

    Google Scholar 

  2. Long J H. Muscles, elastic energy, and the dynamics of body stiffness in swimming eels. American Zoologist, 1998, 38, 771–792.

    Article  Google Scholar 

  3. Westneat M W, Hale M E, Mchenry M J, Long J H. Mechanics of the fast-start: Muscle function and the role of intramuscular pressure in the escape behavior of Amia calva and Polypterus palmas. Journal of Experimental Biology, 1998, 201, 3041–3055.

    Google Scholar 

  4. Marques O A, Rodrigues M G, Sazima I. Body bending: A cryptic defensive behaviour in arboreal snakes. Herpetological Bulletin, 2006, 97, 2–4.

    Google Scholar 

  5. Farley C T, Ko T C. Mechanics of locomotion in lizards. Journal of Experimental Biology, 1997, 200, 2177–2188.

    Google Scholar 

  6. Reilly S M, Delancey M J. Sprawling locomotion in the lizard Sceloporus clarkii: The effects of speed on gait, hindlimb kinematics, and axial bending during walking. Journal of Zoology, 1997, 243, 417–433.

    Article  Google Scholar 

  7. Ding Y, Sharpe S S, Masse A, Goldman D I. Mechanics of undulatory swimming in a frictional fluid. PLoS Computational Biology, 2012, 8, e1002810.

  8. Maladen R D, Ding Y, Li C, Goldman D I. Undulatory swimming in sand: Subsurface locomotion of the sandfish lizard. Science, 2009, 325, 314–318.

    Article  Google Scholar 

  9. Ji A H, Lei Y, Wang Z, Dong B, Yao N. The challenge of maintaining stability in lateral impact. Chinese Science Bulletin, 2014, 59, 1249–1257. (in Chinese)

    Article  Google Scholar 

  10. Ashley-Ross M A, Bechtel B F. Kinematics of the transition between aquatic and terrestrial locomotion in the newt Taricha torosa. Journal of Experimental Biology, 2004, 207, 461–474.

    Article  Google Scholar 

  11. Cabelguen J, Ijspeert A, Lamarque S, Ryczko D. Axial dynamics during locomotion in vertebrates: Lesson from the salamander. Progress in Brain Research, 2010, 187, 149–162.

    Article  Google Scholar 

  12. Frolich L M, Biewener A A. Kinematic and electromyographic analysis of the functional role of the body axis during terrestrial and aquatic locomotion in the salamander Ambystoma tigrinum. Journal of Experimental Biology, 1992, 162, 107–130.

    Google Scholar 

  13. Ritter R. Lateral bending during lizard locomotion. Journal of Experimental Biology, 1992, 173, 1–10.

    Google Scholar 

  14. Peterson J A. The locomotion of Chamaeleo (Reptilia: Sauria) with particular reference to the forelimb. Journal of Zoology, 1984, 202, 1–42.

    Article  Google Scholar 

  15. Schmidt A, Fischer M S. Arboreal locomotion in rats–the challenge of maintaining stability. Journal of Experimental Biology, 2010, 213, 3615–3624.

    Article  Google Scholar 

  16. Ijspeert A J, Crespi A, Ryczko D, Cabelguen J. From swimming to walking with a salamander robot driven by a spinal cord model. Science, 2007, 315, 1416–1420.

    Article  Google Scholar 

  17. Ritter D. Axial muscle function during lizard locomotion. Journal of Experimental Biology, 1996, 199, 2499–2510.

    Google Scholar 

  18. Dickinson M H, Farley C T, Full R J, Koehl M, Kram R, Lehman S. How animals move: An integrative view. Science, 2000, 288, 100–106.

    Article  Google Scholar 

  19. Autumn K, Hsieh S T, Dudek D M, Chen J, Chitaphan C, Full R J. Dynamics of geckos running vertically. Journal of Experimental Biology, 2006, 209, 260–272.

    Article  Google Scholar 

  20. Foster K L, Higham T E. How forelimb and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. Journal of Experimental Biology, 2012, 215, 2288–2300.

    Article  Google Scholar 

  21. Krause C, Fischer M S. Biodynamics of climbing: Effects of substrate orientation on the locomotion of a highly arboreal lizard (Chamaeleo calyptratus). Journal of Experimental Biology, 2013, 216, 1448–1457.

    Article  Google Scholar 

  22. Russell A P, Higham T E. A new angle on clinging in geckos: Incline, not substrate, triggers the deployment of the adhesive system. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3705–3709.

    Article  Google Scholar 

  23. Wang Z Y, Wang J T, Ji A H, Zhang Y Y, Dai Z D. Behavior and dynamics of gecko’s locomotion: The effects of moving directions on a vertical surface. Chinese Science Bulletin, 2011, 56, 573–583.

    Article  Google Scholar 

  24. Zaaf A, Van Damme R, Herrel A, Aerts P. Spatio-temporal gait characteristics of level and vertical locomotion in a ground-dwelling and a climbing gecko. Journal of Experimental Biology, 2001, 204, 1233–1246.

    Google Scholar 

  25. Chen J J, Peattie A M, Autumn K, Full R J. Differential leg function in a sprawled-posture quadrupedal trotter. Journal of Experimental Biology, 2006, 209, 249–259.

    Article  Google Scholar 

  26. Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405, 681–685.

    Article  Google Scholar 

  27. Chen B, Wu P D, Gao H. Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2008, 464, 1639–1652.

    Article  Google Scholar 

  28. Gravish N, Wilkinson M, Autumn K. Frictional and elastic energy in gecko adhesive detachment. Journal of the Royal Society Interface, 2008, 5, 339–348.

    Article  Google Scholar 

  29. Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J. Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences, 2006, 103, 19320–19325.

    Article  Google Scholar 

  30. Dai Z, Wang Z, Ji A. Dynamics of gecko locomotion: A force-measuring array to measure 3D reaction forces. Journal of Experimental Biology, 2011, 214, 703–708.

    Article  Google Scholar 

  31. Wang Z Y, Ji A H, Endlein T, Li W, Samuel D, Dai Z D. Locomotor kinematics of the gecko (Tokay gecko) upon challenge with various inclines. Chinese Science Bulletin, 2014, 59, 4568–4577.

    Article  Google Scholar 

  32. Wang Z Y, Wang J T, Ji A H, Dai Z D. Locomotion behavior and dynamics of geckos freely moving on the ceiling. Chinese Science Bulletin, 2010, 55, 3356–3362.

    Article  Google Scholar 

  33. Russella A, Belsb V. Biomechanics and kinematics of limb-based locomotion in lizards: Review, synthesis and prospectus. Comparative Biochemistry and Physiology Part A, 2001, 131, 89–112.

    Article  Google Scholar 

  34. Rockwell H, Evans F G, Pheasant H C. The comparative morphology of the vertebrate spinal column. Its form as related to function. Journal of Morphology, 1938, 63, 87–117.

    Article  Google Scholar 

  35. Stoecker H. Handbook of Physics, Verlag Harri Deutsch, Frankfurt am Main, 2003.

    Google Scholar 

  36. Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. Frictional adhesion: A new angle on gecko attachment. Journal of Experimental Biology, 2006, 209, 3569–3579.

    Article  Google Scholar 

  37. Beer F P J E. Mechanics of Materials, McGraw Hill Higher Education, New York, 2011.

    Google Scholar 

  38. Bennett W O, Simons R S, Brainerd E L. Twisting and bending: the functional role of salamander lateral hypaxial musculature during locomotion. Journal of Experimental Biology, 2001, 204, 1979–1989.

    Google Scholar 

  39. Huxley H E. The mechanism of muscular contraction. Science, 1969, 164, 1356–1365.

    Article  Google Scholar 

  40. Wakeling J M. Biomechanics of fast-start swimming in fish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2001, 131, 31–40.

    Article  Google Scholar 

  41. Pridmore P A. Trunk movements during locomotion in the marsupial Monodelphis domestica (Didelphidae). Journal of Morphology, 1992, 211, 137–146.

    Article  Google Scholar 

  42. Hildebrand M. Motions of the running cheetah and horse. Journal of Mammalogy, 1959, 481–495.

    Google Scholar 

  43. Liu L Y, Zheng G. Ordinary Animal Science (4rd Edition), Higher Education Press, Beijing, 2009, 334–404. (in Chinese)

    Google Scholar 

  44. Yu X, Peng Y, Aowphol A, Ding L, Brauth S E, Tang Y Z. Geographic variation in the advertisement calls of Gekko gecko in relation to variations in morphological features: Implications for regional population differentiation. Ethology Ecology & Evolution, 2011, 23, 211–228.

    Article  Google Scholar 

  45. Wang Z Y, Wang J T, Ji A H, Dai Z D. Locomotion behavior and dynamics of geckos freely moving on the ceiling. Chinese Science Bulletin, 2010, 55, 3356–3362.

    Article  Google Scholar 

  46. Damme R, Vanhooydonck B. Speed versus manoeuvrability: Association between vertebral number and habitat structure in lacertid lizards. Journal of Zoology, 2002, 258, 327–334.

    Article  Google Scholar 

  47. Chen Z K, Din G. Dissection of the skeletal system of gecko. Journal of Yunnan Agricultural University, 1990, 5, 1–6. (in Chinese)

    Google Scholar 

  48. Liu X Y, Dai Z D. A quantitative research on Tokay gecko’s appendicular muscle. Anatomical Research, 2005, 27, 292–301. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Cai, L., Li, W. et al. Effect of Slope Degree on the Lateral Bending in Gekko geckos. J Bionic Eng 12, 238–249 (2015). https://doi.org/10.1016/S1672-6529(14)60116-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60116-5

Keywords

Navigation