Skip to main content
Log in

Locomotor kinematics of the gecko (Tokay gecko) upon challenge with various inclines

  • Article
  • Bionic Engineering
  • Published:
Chinese Science Bulletin

Abstract

Tokay geckos are skillful climbers and are able to negotiate difficult terrain such as steep slopes and overhanging inclines without losing their foothold. Here, we present data on the changes in locomotor kinematics when geckos are challenged to walk on various inclined surfaces. We trained individual geckos to move along a platform which can be tilted to simulate different slopes. The animals were filmed using a high-speed video camera. The results showed that their speed decreased with increasing slope angle, and their speed on the steep and inverted slopes (sloped angle >60°) decreased at a faster rate than on the shallow slopes (sloped angle <60°). The geckos’ stride length was much greater on the shallow slopes compared to the inverted slopes. The influence of stride length and stride frequency on speed was different when the geckos moved across different slopes. There are significant differences duty factor, which varied from 0.54 when wall climbing (90° slope) to 0.84 when walking on the ceiling (180° slope). The mechanisms revealed this study will improve our understanding of control strategies in kinematics and inspire the design of robots with greater mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dickinson MH, Farley CT, Full RJ et al (2000) How animals move: an integrative view. Science 288:100–106

    Article  Google Scholar 

  2. Goldman DI, Chen TS, Dudek DM et al (2006) Dynamics of rapid vertical climbing in cockroaches reveals a template. J Exp Biol 209:2990–3000

    Article  Google Scholar 

  3. Zaaf A, Herrel A, Aerts P et al (1999) Morphology and morphometrics of the appendicular musculature in geckoes with different locomotor habits (Lepidosauria). Zoomorphology 119:9–22

    Article  Google Scholar 

  4. Autumn K, Hsieh ST, Dudek DM et al (2006) Dynamics of geckos running vertically. J Exp Biol 209:260–272

    Article  Google Scholar 

  5. Wang ZY, Wang JT, Ji AH et al (2011) Behavior and dynamics of gecko locomotion: effects of moving directions on vertical surface. Chin Sci Bull 56:573–583

    Article  Google Scholar 

  6. Zaaf A, Van Damme R, Herrel A et al (2001) Spatio-temporal gait characteristics of level and vertical locomotion in a ground-dwelling and a climbing gecko. J Exp Biol 204:1233–1246

    Google Scholar 

  7. Irschick DJ, Vanhooydonck B, Herrel A et al (2003) Effects of loading and size on maximum power output and gait characteristics in geckos. J Exp Biol 206:3923–3934

    Article  Google Scholar 

  8. Diedrich FJ, Warren WH (1998) The dynamics of gait transition: effect of grade and load. J Motor Behav 30:60–78

    Article  Google Scholar 

  9. Diedrich FJ, Warren WH (1998) Dynamics of gait transitions. In: Rosenbaum DA, Collyer CE (eds) Timing of behaviour. Neural, psychological and computational perspectives. MIT Press, Cambridge, pp 323–343

    Google Scholar 

  10. Full RJ, Kubow T (1998) The role of the mechanical system in control. In: Blickhan R, Wisser A, Nachtigall W (eds) Motion system. Gustav Fischer, Jena, pp 215–216

    Google Scholar 

  11. Aerts P, Van Damme R, Van Elsacker L et al (2000) Spatio-temporal gait characteristics of the hind-limb cycles during voluntary bipedal and quadrupedal walking in bonobos (Pan paniscus). Am J Phys Anthropol 111:503–517

    Article  Google Scholar 

  12. Van Damme R, Aerts P, Vanhooydonck B (1998) Variation in morphology, gait characteristics and speed of locomotion in two populations of lizards. Biol J Linn Soc 63:409–427

    Article  Google Scholar 

  13. Verstappen M, Aerts P (2000) Terrestrial locomotion in the black-billed magpie. I. Spatio-temporal gait characteristics. Motor Contrl 4:150–164

    Google Scholar 

  14. Dutto DJ, Hoyt DF, Clayton HM et al (2006) Joint work and power for both the forelimb and hindlimb during trotting in the horse. J Exp Biol 209:3990–3999

    Article  Google Scholar 

  15. Lammers AR (2007) Locomotor kinetics on sloped arboreal and terrestrial substrates in a small quadrupedal mammal. Zoology 110:93–103

    Article  Google Scholar 

  16. Lammers AR, Earls KD, Biknevicius AR (2006) Locomotor kinetics and kinematics on inclines and declines in the gray short-tailed opossum Monodelphis domestica. J Exp Biol 209:4154–4166

    Article  Google Scholar 

  17. Full RJ, Tullis A (1990) The energetics of ascent: insects on inclines. J Exp Biol 149:307–317

    Google Scholar 

  18. Endlein T, Ji AH, Samue D et al (2013) Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces. J R Soc Interface 10:1743–1752

    Article  Google Scholar 

  19. Foster KL, Higham TE (2012) How forelimb and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. J Exp Biol 215:2288–2300

    Article  Google Scholar 

  20. Han LB, Wang ZY, Ji AH et al (2011) Grip and detachment of locusts on inverted sandpaper substrates. Bioinspir Biomim 6:386–392

    Article  Google Scholar 

  21. Krause C, Fischer MS (2013) Biodynamics of climbing: effects of substrate orientation on the locomotion of a highly arboreal lizard (Chamaeleo calyptratus). J Exp Biol 216:1448–1457

    Article  Google Scholar 

  22. Chen JJ, Peattie AM, Autumn K et al (2006) Differential leg function in a sprawled-posture quadrupedal trotter. J Exp Biol 209:249–259

    Article  Google Scholar 

  23. Autumn K, Liang TA, Hsieh ST et al (2000) Adhesive force of a single gecko foot-flair. Nature 405:681–685

    Article  Google Scholar 

  24. Huber G, Mantz H, Spolenak R et al (2005) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci USA 102:16293–16296

    Article  Google Scholar 

  25. Peattie AM, Majidi C, Corder A et al (2007) Ancestrally high elastic modulus of gecko setal β-keratin. J R Soc Interface 4:1071–1076

    Article  Google Scholar 

  26. Chen B, Wu PD, Gao HJ (2009) Pre-tension generates strongly reversible adhesion of a spatula pad on substrate. J R Soc Interface 6:529–537

    Article  Google Scholar 

  27. Autumn K, Peattie A (2002) Mechanisms of adhesion in Geckos. Soc Integr Comp Biol 42:1081–1090

    Article  Google Scholar 

  28. Bhushan B, Sayer RA (2007) Gecko feet: natural attachment systems for smart adhesion. In: Bhushan B, Tomitori M, Fuchs H (eds) Applied scanning probe methods VII. Springer, Heidelberg, pp 41–76

    Chapter  Google Scholar 

  29. Chen BB, Wu PD, Gao H (2008) Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion. Proc R Soc A 464:1639–1652

    Article  Google Scholar 

  30. Gravish N, Wilkinson M, Autumn K (2008) Frictional and elastic energy in gecko adhesive detachment. J R Soc Interface 5:339–348

    Article  Google Scholar 

  31. Kim TW, Bhushan B (2008) The adhesion model considering capillarity for gecko attachment system. J R Soc Interface 5:319–327

    Article  Google Scholar 

  32. Pesika NS, Tian Y, Zhao B et al (2007) Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes 83:383–401

    Article  Google Scholar 

  33. Rizzo NW, Gardner KH, Walls DJ et al (2006) Characterization of the structure and composition of gecko adhesive setae. J R Soc Interface 3:441–451

    Article  Google Scholar 

  34. Russell AP (2002) Integrative functional morphology of the Tokaytan adhesive system (Reptilia: Tokayta). Integr Comp Biol 42:1154–1163

    Article  Google Scholar 

  35. Tian Y, Pesika N, Zeng HB et al (2006) Adhesion and friction in gecko toe attachment. Proc Natl Acad Sci USA 103:19320–19325

    Article  Google Scholar 

  36. Bauer AM, Russell AP, Powell GL (1996) The evolution of locomotor morphology in Rhoptropus (Squamata: Tokaynidae): functional and phylogenetic considerations. Afr J Herpetol 45:8–30

    Article  Google Scholar 

  37. Li HK, Dai ZD, Shi AJ et al (2008) Angular observation of joints of geckos moving on horizontal and vertical surfaces. Chin Sci Bull 54:592–598

    Article  Google Scholar 

  38. Russell AP, Higham TE (2009) A new angle on clinging in geckos: incline, not substrate, triggers the deployment of the adhesive system. Proc R Soc B 276:3705–3709

    Article  Google Scholar 

  39. Wang ZY, Wang JT, Ji AH et al (2010) Locomotion behavior and dynamics of geckos freely moving on the ceiling. Chin Sci Bull 55:3356–3362

    Article  Google Scholar 

  40. Higham TE, Jayne BC (2004) Locomotion of lizards on inclines and perches: hindlimb kinematics of an arboreal specialist and a terrestrial generalist. J Exp Biol 207:233–248

    Article  Google Scholar 

  41. Jayne BC, Irschick DJ (1999) Effects of incline and speed on the three-dimensional hindlimb kinematics of a generalized iguanian lizard Dipsosaurus dorsalis. J Exp Biol 202:143–159

    Google Scholar 

  42. Jusufi A, Goldman DI, Revzen S et al (2008) Active tails enhance arboreal acrobatics in geckos. Proc Natl Acad Sci USA 105:4215–4219

    Article  Google Scholar 

  43. Libby T, Moore TY, Siu EC et al (2012) Tail-assisted pitch control in lizards, robots and dinosaurs. Nature 481:181–184

    Article  Google Scholar 

  44. Martinez M, Full R, Koehl M (1998) Underwater punting by an intertidal crab: a novel gait revealed by the kinematics of pedestrian locomotion in air versus water. J Exp Biol 201:2609–2623

    Google Scholar 

  45. Ting LH, Blickhan R, Full RJ (1994) Dynamic and static stability in hexapedal runners. J Exp Biol 197:251–269

    Google Scholar 

  46. Dai ZD, Wang ZY, Ji AH (2011) Dynamics of gecko locomotion: a force-measuring array to measure 3D reaction forces. J Exp Biol 214:701–706

    Article  Google Scholar 

  47. Young HD, Freedman RA, Ford AL (2010) University physics with modern physics: international edition. Pearson, London

    Google Scholar 

  48. Yu X, Peng Y, Aowphol A et al (2011) Geographic variation in the advertisement calls of Tokay gecko in relation to variations in morphological features: implications for regional population differentiation. Ethol Ecol Evol 23:211–228

    Article  Google Scholar 

  49. Lipp A, Harald W, Fritz-Olaf L (2005) Walking on inclines: energetics of locomotion in the ant Camponotus. J Exp Biol 208:707–719

    Article  Google Scholar 

  50. Autumn K, Dittmore A, Santos D et al (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209:3569–3579

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61175105 and 61161120323), the Doctoral Fund of Ministry of Education of China (20123218110031), and the Fundamental Research Funds for the Central Universities (CXZZ11_0198 and BCXJ10_10).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Dong Dai.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZY., Ji, AH., Endlein, T. et al. Locomotor kinematics of the gecko (Tokay gecko) upon challenge with various inclines. Chin. Sci. Bull. 59, 4568–4577 (2014). https://doi.org/10.1007/s11434-014-0557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0557-2

Keywords

Navigation